Future Lab Production Networking, Modeling and Optimization of the Industrial Production

被引:0
作者
Kallisch J. [1 ]
Denkena B. [2 ]
Kramer K. [3 ]
Stürenburg L. [1 ]
Pachandrin S. [4 ]
Rokicki M. [5 ]
Walter J. [6 ]
Nein M. [2 ]
Voss M. [7 ]
Wunck C. [1 ]
Niemann K.-H. [7 ]
Schmidt M. [8 ]
Dilger K. [4 ]
Niederée C. [5 ]
Hoffmann N. [4 ]
机构
[1] Hochschule Emden/Leer, Constantinplatz 4, Emden
[2] IFW, Leibniz Universität, Hannover
[3] IPTS, Leuphana Universität, Lüneburg
[4] IFS, Technische Universität, Braunschweig
[5] Forschungszentrum L3S der Leibniz Universität, Hannover
[6] OFFIS Institute for Information Technology, Oldenburg
[7] Hochschule, Hannover
[8] IFL, Leibniz Universität, Hannover
来源
ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb | 2024年 / 119卷 / 05期
关键词
Digital Twin; Information Exchange; Machine Learning; Manufacturing Network; Process Control; Retrofitting;
D O I
10.1515/zwf-2024-1061
中图分类号
学科分类号
摘要
The Future Lab Production demonstrates the potentials of digitalisation by using the die casting process as an example process. The project shows how manufacturing companies can digitalise their existing machines, analyse their data and exchange information along the supply chain while maintaining data sovereignty. The aim is to support companies with digitalisation from the machine to data platforms. The article describes the methods used, the concepts developed and their benefits. © 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany.
引用
收藏
页码:372 / 377
页数:5
相关论文
共 17 条
  • [1] Kallisch J., Wunck C., Options for Connecting Decentralized Data Infrastructure to Improve Supply-Chain Decision Making Without Giving Up Individual Data Property
  • [2] Kallisch J., Marx-Gomez J., Wunck C., Mora M., Et al., Development Methodologies for Big Data Analytics Systems, pp. 249-262, (2024)
  • [3] Kallisch J., Wunck C., Development and Evaluation of a Process Management and Analytics Platform for Small and Medium-sized Enterprises, International Journal for Computers & Their Applications, 30, 2, (2023)
  • [4] Kallisch J., Wunck C., Using Vertical Federated Learning in Industrial Supply Chains, Decision Science Institute
  • [5] VDI/VDE 2182 Blatt 1: Informationssicherheit in der Industriellen Automatisierung - Allgemeines Vorgehensmodell, (2020)
  • [6] Informationstechnik in DIN und VDE, DIN en IEC 62443-3-3 (VDE 0802-3-3):2020-01: Industrielle Kommunikationsnetze - IT-Sicherheit für Netze und Systeme - Teil 3-3: Systemanforderungen zur IT-Sicherheit und Security-Level, DKE, Offenbach A.M., (2019)
  • [7] Baumann S., Bellagarda A., Franze' C., Merlino A., Pesce D., Walter J., Smart Digital Retrofitting in Manufacturing Operations for Sustainable Industry 4.0 Implementation, Contributo in Atti di Convegno (Proceeding): Euroma Conference, (2023)
  • [8] Lorenz A., Analyse des Laserstrahlabtragens für Den Wirtschaftlichen Einsatz im Werkzeug- Und Formenbau, (2009)
  • [9] Tosello G., Bissacco G., Cao J., Axinte D., Modeling and Simulation of Surface Generation in Manufacturing, CIRP Annals, 72, 2, pp. 753-779, (2023)
  • [10] Denkena B., Dittrich M.-A., Lindauer M., Mainka J., Sturenburg L., Using AutoML to Optimize Shape Error Prediction in Milling Processes, Proceedings of the Machining Innovations Conference (MIC), (2020)