共 44 条
- [21] Jia Y., Liu J., Chen L., Zhao T., Wang Y., THItoGene: a deep learning method for predicting spatial transcriptomics from histological images, Briefings Bioinf., 25, (2024)
- [22] Zhao T., Liu J., Zeng X., Wang W., Li S., Zang T., Peng J., Yang Y., Prediction and collection of protein–metabolite interactions, Briefings Bioinf., 22, (2021)
- [23] Guo H., Zhang L., Cui X., Cheng L., Zhao T., Wang Y., SCancerRNA: expression at the single cell level and interaction resource of non-coding RNA biomarkers for cancers, bioRxiv, (2023)
- [24] Zhao T., Lyu S., Lu G., Juan L., Zeng X., Wei Z., Hao J., Peng J., SC2disease: a manually curated database of single-cell transcriptome for human diseases, Nucleic Acids Res., 49, pp. D1413-D1419, (2021)
- [25] Liang P., Li Y., Wang B., Yuan X., Zhang L., Remaining useful life prediction via a deep adaptive transformer framework enhanced by graph attention network, Int. J. Fatig., 174, (2023)
- [26] Das S., Sultana M., Bhattacharya S., Sengupta D., De D., XAI–reduct: accuracy preservation despite dimensionality reduction for heart disease classification using explainable AI, J. Supercomput., pp. 1-31, (2023)
- [27] Zhang T., Lin Y., He W., Yuan F., Zeng Y., Zhang S., GCN-GENE: a novel method for prediction of coronary heart disease-related genes, Comput. Biol. Med., 150, (2022)
- [28] Wang J., Hu J., Sun H., Xu M., Yu Y., Liu Y., Cheng L., MGPLI: exploring multigranular representations for protein–ligand interaction prediction, Bioinformatics, 38, pp. 4859-4867, (2022)
- [29] Wang C., Yuan C., Wang Y., Chen R., Shi Y., Zhang T., Xue F., Patti G.J., Wei L., Hou Q., MPI-VGAE: protein–metabolite enzymatic reaction link learning by variational graph autoencoders, Briefings Bioinf., (2023)
- [30] Cheng N., Chen C., Li C., Huang J., Inferring cell-type-specific genes of lung cancer based on deep learning, Curr. Gene Ther., 22, pp. 439-448, (2022)