Prediction of systemic lupus erythematosus-related genes based on graph attention network and deep neural network

被引:0
作者
Fang F. [1 ]
Sun Y. [2 ]
机构
[1] Department of Rheumatology and Immunology, The First Hospital of China Medical University, Liaoning, Shenyang
[2] Department of Ophthalmology, The First Hospital of China Medical University, Liaoning, Shenyang
关键词
Deep neural network; Gene; Graph attention network; Systemic lupus erythematosus;
D O I
10.1016/j.compbiomed.2024.108371
中图分类号
学科分类号
摘要
Systemic lupus erythematosus (SLE) is an autoimmune disorder intricately linked to genetic factors, with numerous approaches having identified genes linked to its development, diagnosis and prognosis. Despite genome-wide association analysis and gene knockout experiments confirming some genes associated with SLE, there are still numerous potential genes yet to be discovered. The search for relevant genes through biological experiments entails significant financial and human resources. With the advancement of computational technologies like deep learning, we aim to identify SLE-related genes through deep learning methods, thereby narrowing down the scope for biological experimentation. This study introduces SLEDL, a deep learning-based approach that leverages DNN and graph neural networks to effectively identify SLE-related genes by capturing relevant features in the gene interaction network. The above steps transform the identification of SLE related genes into a binary classification problem, ultimately solved through a fully connected layer. The results demonstrate the superiority of SLEDL, achieving higher AUC (0.7274) and AUPR (0.7599), further validated through case studies. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 44 条
  • [1] Goulielmos G.N., Zervou M.I., Vazgiourakis V.M., Ghodke-Puranik Y., Garyfallos A., Niewold T.B., The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry, Gene, 668, pp. 59-72, (2018)
  • [2] Carter E.E., Barr S.G., Clarke A.E., The global burden of SLE: prevalence, health disparities and socioeconomic impact, Nat. Rev. Rheumatol., 12, pp. 605-620, (2016)
  • [3] Cheng L., Qi C., Yang H., Lu M., Cai Y., Fu T., Ren J., Jin Q., Zhang X., gutMGene: a comprehensive database for target genes of gut microbes and microbial metabolites, Nucleic Acids Res., 50, pp. D795-D800, (2022)
  • [4] Qi C., Cai Y., Qian K., Li X., Ren J., Wang P., Fu T., Zhao T., Cheng L., Shi L., gutMDisorder v2. 0: a comprehensive database for dysbiosis of gut microbiota in phenotypes and interventions, Nucleic Acids Res., 51, pp. D717-D722, (2023)
  • [5] Wang P., Zhang S., He G., Du M., Qi C., Liu R., Zhang S., Cheng L., Shi L., Zhang X., microbioTA: an atlas of the microbiome in multiple disease tissues of Homo sapiens and Mus musculus, Nucleic Acids Res., 51, pp. D1345-D1352, (2023)
  • [6] Deng Y., Tsao B.P., Genetic susceptibility to systemic lupus erythematosus in the genomic era, Nat. Rev. Rheumatol., 6, pp. 683-692, (2010)
  • [7] Khunsriraksakul C., Li Q., Markus H., Patrick M.T., Sauteraud R., McGuire D., Wang X., Wang C., Wang L., Chen S., Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus, Nat. Commun., 14, (2023)
  • [8] Kim K., Brown E.E., Choi C.-B., Alarcon-Riquelme M.E., Kelly J.A., Glenn S.B., Ojwang J.O., Adler A., Lee H.-S., Boackle S.A., Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries, Ann. Rheum. Dis., 71, pp. 1809-1814, (2012)
  • [9] Joo Y.B., Lim J., Tsao B.P., Nath S.K., Kim K., Bae S.-C., Genetic variants in systemic lupus erythematosus susceptibility loci, XKR6 and GLT1D1 are associated with childhood-onset SLE in a Korean cohort, Sci. Rep., 8, (2018)
  • [10] Chen L., Wang Y.-F., Liu L., Bielowka A., Ahmed R., Zhang H., Tombleson P., Roberts A.L., Odhams C.A., Cunninghame Graham D.S., Genome-wide assessment of genetic risk for systemic lupus erythematosus and disease severity, Hum. Mol. Genet., 29, pp. 1745-1756, (2020)