Control of a nonlinear wave equation with a dynamic boundary condition

被引:0
作者
Madureira, Rodrigo L. R. [1 ]
Rincon, Mauro A. [2 ]
Apolaya, Ricardo F. [3 ]
Carmo, Bruno A. [2 ]
机构
[1] Univ Estado Rio De Janeiro, IME, Rio De Janeiro, Brazil
[2] Fed Univ Fluminense, Comp Inst, Rio De Janeiro, Brazil
[3] Fed Fluminense Univ, Math Inst, Niteroi, Brazil
关键词
Dynamical control boundary; Nonlinear wave equation; Faedo-Galerkin method; Linearized Crank-Nicolson-Galerkin method; ENERGY DECAY-RATE; NUMERICAL-ANALYSIS; SIMULATION; STABILITY; EXISTENCE; SYSTEM;
D O I
10.1016/j.camwa.2024.09.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence, uniqueness, energy decay, and approximate numerical solution for the nonlinear wave equation with dynamic control at the boundary is being studied in this work. The theoretical analysis of the problem will be conducted using the Faedo-Galerkin method and compactness results. To obtain the approximate numerical solution, a combined approach of the finite element method and a finite difference method will be employed, known as the linearized Crank-Nicolson Galerkin method. This method optimizes the calculations and preserves the quadratic order of convergence in time. Finally, numerical experiments are performed, and tables and graphs are presented to illustrate the theoretical convergence rates and demonstrate the consistency between theoretical and numerical results.
引用
收藏
页码:140 / 149
页数:10
相关论文
共 28 条
[1]   Nonlinear wave equation with Dirichlet and Acoustic boundary conditions: theoretical analysis and numerical simulation [J].
Alcantara, Adriano A. ;
Carmo, Bruno A. ;
Clark, Haroldo R. ;
Guardia, Ronald R. ;
Rincon, Mauro A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)
[2]   Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping [J].
Ammari, Kais ;
Hassine, Fathi ;
Robbiano, Luc .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) :577-601
[3]  
[Anonymous], 1969, Quelques mthodes de rsolution des problmes aux limites non linaires
[4]   A finite element scheme for a 2D-wave equation with dynamical boundary control [J].
Bzeih, Moussa ;
El Arwadi, Toufic ;
Wehbe, Ali ;
Madureira, Rodrigo L. R. ;
Rincon, Mauro A. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 205 :315-339
[5]   Numerical Analysis and Simulation for a Wave Equation with Dynamical Boundary Control [J].
Bzeih, Moussa ;
El Arwadi, Toufic ;
Wehbe, Ali ;
Rincon, Mauro A. ;
Madureira, Rodrigo L. R. .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
[6]   Analysis and Numerical Simulation of Viscous Burgers Equation [J].
Clark, H. R. ;
Rincon, M. A. ;
Silva, A. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (07) :695-716
[7]   On a system of Klein-Gordon type equations with acoustic boundary conditions [J].
Cousin, AT ;
Frota, CL ;
Larkin, NA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (01) :293-309
[9]  
DASSIOS G, 1984, ARCH RATION MECH AN, V87, P49, DOI 10.1007/BF00251002
[10]   Existence and exponential stability of a damped wave equation with dynamic boundary conditions and a delay term [J].
Gerbi, Stephane ;
Said-Houari, Belkacem .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (24) :11900-11910