共 49 条
- [1] Enerdata renewable electricity production by country
- [2] Anindya A., Minor elements distribution during the smelting of WEEE with copper scrap, School of Civil, Environmental & Chemical Engineering Science, Engineering & Technology (SET) Portfolio RMIT University, (2012)
- [3] Hydrogen as the reducing agent in the REcovery of metals and minerals from metallurgical waste
- [4] Bale C.W., Belisle E., Chartand P., Decterov S.A., Eriksson G., Gheribi A.E., Hack K., Hung I.H., Kang Y.B., Melancon J., Et al., FactSage thermochemical software and database - 2010-2016, Calphad, 54, pp. 35-53, (2016)
- [5] Banaszkiewicz T., Chorowski M., Energy consumption of air-separation adsorption methods, Entropy, 20, (2018)
- [6] Chen J., Wang Z., Wu Y., Li L., Li B., Pan D., Zuo T., Environmental benefits of secondary copper from primary copper based on life cycle assessment in China, Resour. Conserv. Recycl., 146, pp. 35-44, (2019)
- [7] Chen M., Avarmaa K., Taskinen P., Klemettinen L., Michallik R., O'Brien H., Jokilaakso A., Handling trace elements in WEEE recycling through copper smelting-an experimental and thermodynamic study, Miner. Eng., 173, (2021)
- [8] Dong D., van Oers L., Tukker A., van der Voet E., Assessing the future environmental impacts of copper production in China: implications of the energy transition, J. Clean. Prod., 274, (2020)
- [9] Dong D., Tukker A., Steubing B., van Oers L., Rechberger H., Alonso Aguilar-Hernandez G., Li H., Van der Voet E., Assessing China's potential for reducing primary copper demand and associated environmental impacts in the context of energy transition and “zero waste” policies, Waste Manag., 144, pp. 454-467, (2022)
- [10] Carrara S., Alves Dias P., Plazzotta B., Pavel C., Raw Materials Demand for Wind and Solar PV Technologies in the Transition towards a Decarbonised Energy System, (2020)