D2Net: discriminative feature extraction and details preservation network for salient object detection

被引:0
作者
Guo, Qianqian [1 ]
Shi, Yanjiao [1 ]
Zhang, Jin [1 ]
Yang, Jinyu [1 ]
Zhang, Qing [1 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
salient object detection; convolutional neural network; multi-scale features; feature fusion; MODEL;
D O I
10.1117/1.JEI.33.4.043047
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Convolutional neural networks (CNNs) with a powerful feature extraction ability have raised the performance of salient object detection (SOD) to a unique level, and how to effectively decode the rich features from CNN is the key to improving the performance of the SOD model. Some previous works ignored the differences between the high-level and low-level features and neglected the information loss during feature processing, making them fail in some challenging scenes. To solve this problem, we propose a discriminative feature extraction and details preservation network (D(2)Net) for SOD. According to the different characteristics of high-level and low-level features, we design a residual optimization module for filtering complex background noise in shallow features and a pyramid feature extraction module to eliminate the information loss caused by atrous convolution in high-level features. Furthermore, we design a features aggregation module to aggregate the elaborately processed high-level and low-level features, which fully considers the performance of different level features and preserves the delicate boundary of salient object. The comparisons with 17 existing state-of-the-art SOD methods on five popular datasets demonstrate the superiority of the proposed D(2)Net, and the effectiveness of each proposed module is verified through numerous ablation experiments. (c) 2024 SPIE and IS&T
引用
收藏
页数:20
相关论文
共 72 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[3]   Reverse Attention for Salient Object Detection [J].
Chen, Shuhan ;
Tan, Xiuli ;
Wang, Ben ;
Hu, Xuelong .
COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 :236-252
[4]  
Chen ZY, 2020, AAAI CONF ARTIF INTE, V34, P10599
[5]  
Deng ZJ, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P684
[6]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[7]   Attentive Feedback Network for Boundary-Aware Salient Object Detection [J].
Feng, Mengyang ;
Lu, Huchuan ;
Ding, Errui .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1623-1632
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]  
Hinton G, 2015, Arxiv, DOI arXiv:1503.02531
[10]   Deeply Supervised Salient Object Detection with Short Connections [J].
Hou, Qibin ;
Cheng, Ming-Ming ;
Hu, Xiaowei ;
Borji, Ali ;
Tu, Zhuowen ;
Torr, Philip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5300-5309