Reconfigurable Electro-Optic FET Based on Ferroelectric Electrostatic Doping toward Optical Field Programmable Gate Arrays

被引:1
作者
Zhang, Yong [1 ]
Guo, Feng [2 ,3 ]
Luo, Zheng-Dong [1 ,4 ]
Tian, Ruijuan [2 ,3 ]
Yao, Danyang [1 ]
Chen, Xiaoqing [2 ,3 ]
Fang, Cizhe [1 ,4 ]
Gan, Xuetao [2 ,3 ]
Liu, Yan [1 ]
Hao, Yue [1 ]
Han, Genquan [1 ,4 ]
机构
[1] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Band Gap Semicond Te, Xian 710071, Peoples R China
[2] Northwestern Polytech Univ, Key Lab Light Field Manipulat & Informat Acquisit, Minist Ind & Informat Technol, Sch Phys Sci & Technol, Xian 710129, Peoples R China
[3] Northwestern Polytech Univ, Sch Phys Sci & Technol, Shaanxi Key Lab Opt Informat Technol, Xian 710129, Peoples R China
[4] Xidian Univ, Hangzhou Inst Technol, Hangzhou 311200, Peoples R China
来源
ACS PHOTONICS | 2024年 / 11卷 / 11期
基金
浙江省自然科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
reconfigurable device; electro-optic transistor; ferroelectric doping; graphene; optical FPGA; PHASE-CHANGE MATERIALS; SILICON PHOTONICS; PLASMONIC MEMRISTOR; GRAPHENE;
D O I
10.1021/acsphotonics.4c01260
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Silicon photonic integrated circuits have been extremely well developed and have gradually moved toward large-scale production. However, the limitations of current scaling have forced researchers to explore new avenues to achieve more compact integration and to develop more cost-effective silicon photonics components. Silicon photonic FPGAs are more area-efficient and flexible compared to traditional on-chip optical circuits due to their reconfigurable nature, which allows for the optimization of silicon photonic devices after fabrication. This feature enables a wide range of applications and performance requirements to be met with a single chip design, thereby reducing costs and enabling the rapid prototyping of new photonic circuits. Here, leveraging ferroelectric-doped graphene into a silicon field programmable gate array, we propose a compact reconfigurable electro-optical device with superior nonvolatility and reconfigurability, broadening the range of applications for programmable silicon photonics. Nonvolatile multilevel memory with electrical write and optical readout is implemented. This innovative memory system supports 10 distinct levels of electro-optical storage, providing enhanced capacity and flexibility. Carrier-enhanced and -depleted modes can be reconfigured by electrical programming on the same optical logic gate. Reconfigurable logic computing in the electronic and optical domain that takes advantage of this feature is demonstrated. Our work provides a compact new approach for programmable electro-optic field programmable gate arrays with low power consumption.
引用
收藏
页码:4761 / 4768
页数:8
相关论文
共 38 条
[1]   Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip [J].
Atabaki, Amir H. ;
Moazeni, Sajjad ;
Pavanello, Fabio ;
Gevorgyan, Hayk ;
Notaros, Jelena ;
Alloatti, Luca ;
Wade, Mark T. ;
Sun, Chen ;
Kruger, Seth A. ;
Meng, Huaiyu ;
Al Qubaisi, Kenaish ;
Wang, Imbert ;
Zhang, Bohan ;
Khilo, Anatol ;
Baiocco, Christopher V. ;
Popovic, Milos A. ;
Stojanovic, Vladimir M. ;
Ram, Rajeev J. .
NATURE, 2018, 556 (7701) :349-+
[2]   Programmable Silicon Photonic Integrated Circuits [J].
Bogaerts, Wim ;
Chen, Xiangfeng ;
Wang, Mi ;
Zand, Iman ;
Deng, Hong ;
Van Iseghem, Lukas ;
Ribeiro, Antonio ;
Tormo, Alejandro Diaz ;
Khan, Umar .
2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
[3]   Programmable photonic circuits [J].
Bogaerts, Wim ;
Perez, Daniel ;
Capmany, Jose ;
Miller, David A. B. ;
Poon, Joyce ;
Englund, Dirk ;
Morichetti, Francesco ;
Melloni, Andrea .
NATURE, 2020, 586 (7828) :207-216
[4]   Silicon Photonics Circuit Design: Methods, Tools and Challenges [J].
Bogaerts, Wim ;
Chrostowski, Lukas .
LASER & PHOTONICS REVIEWS, 2018, 12 (04)
[5]  
Capmany J., 2020, Programmable Integrated Photonics
[6]   The Emergence of Silicon Photonics as a Flexible Technology Platform [J].
Chen, Xia ;
Milosevic, Milan M. ;
Stankovic, Stevan ;
Reynolds, Scott ;
Bucio, Thalia Dominguez ;
Li, Ke ;
Thomson, David J. ;
Gardes, Frederic ;
Reed, Graham T. .
PROCEEDINGS OF THE IEEE, 2018, 106 (12) :2101-2116
[7]   Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material [J].
Delaney, Matthew ;
Zeimpekis, Ioannis ;
Du, Han ;
Yan, Xingzhao ;
Banakar, Mehdi ;
Thomson, David J. ;
Hewak, Daniel W. ;
Muskens, Otto L. .
SCIENCE ADVANCES, 2021, 7 (25)
[8]   Atomic Scale Plasmonic Switch [J].
Emboras, Alexandros ;
Niegemann, Jens ;
Ma, Ping ;
Haffner, Christian ;
Pedersen, Andreas ;
Luisier, Mathieu ;
Hafner, Christian ;
Schimmel, Thomas ;
Leuthold, Juerg .
NANO LETTERS, 2016, 16 (01) :709-714
[9]   Nanoscale Plasmonic Memristor with Optical Readout Functionality [J].
Emboras, Alexandros ;
Goykhman, Ilya ;
Desiatov, Boris ;
Mazurski, Noa ;
Stern, Liron ;
Shappir, Joseph ;
Levy, Uriel .
NANO LETTERS, 2013, 13 (12) :6151-6155
[10]   Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters [J].
Fang, Zhuoran ;
Chen, Rui ;
Zheng, Jiajiu ;
Khan, Asir Intisar ;
Neilson, Kathryn M. ;
Geiger, Sarah J. ;
Callahan, Dennis M. ;
Moebius, Michael G. ;
Saxena, Abhi ;
Chen, Michelle E. ;
Rios, Carlos ;
Hu, Juejun ;
Pop, Eric ;
Majumdar, Arka .
NATURE NANOTECHNOLOGY, 2022, 17 (08) :842-+