Surfactant-facilitated metabolic induction enhances lipase production from an optimally formulated waste-derived substrate mix using Aspergillus niger: A case of machine learning modeling and metaheuristic optimization

被引:2
作者
Amenaghawon, Andrew Nosakhare [1 ]
Eshiemogie, Stanley Aimhanesi [1 ]
Evbarunegbe, Nelson Iyore [2 ]
Oyefolu, Peter Kayode [1 ,3 ]
Eshiemogie, Steve Oshiokhai [1 ,3 ]
Okoduwa, Ibhadebhunuele Gabriel [1 ]
Okedi, Maxwell Ogaga [1 ,4 ]
Anyalewechi, Chinedu Lewis [1 ,5 ]
Kusuma, Heri Septya [6 ]
机构
[1] Univ Benin, Dept Chem Engn, Bioresources Valorizat Lab, Benin, Edo, Nigeria
[2] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA
[3] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA
[4] Florida State Univ, Florida A&M Univ, Dept Chem & Biomed Engn, Tallahassee, FL USA
[5] Fed Polytech Oko, Dept Chem Engn, Oko, Anambra State, Nigeria
[6] Univ Pembangunan Nas Vet Yogyakarta, Fac Ind Technol, Dept Chem Engn, Depok, Indonesia
来源
BIORESOURCE TECHNOLOGY REPORTS | 2024年 / 28卷
关键词
Lipase; Aspergillus niger; Machine learning; Ternary substrate mix; Surfactant; Optimization; SOLID-STATE FERMENTATION; ROQUEFORTI ATCC 10110;
D O I
10.1016/j.biteb.2024.101993
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
This study introduces a novel method to enhance lipase production by integrating machine learning (ML) models and optimization algorithms. Six ML models, including support vector regression (SVR), kernel ridge regression (KRR), extreme gradient boosting (XGB), extreme learning machine (ELM), random forest (RF), and artificial neural networks (ANN), were employed to predict lipase activity in a multi-substrate system using avocado seed, coconut pulp, and palm oil mill effluent (POME) with Aspergillus niger. SVR proved the most effective (R2 = 0.9738; RMSE = 7.0089). Further optimization using manta ray foraging optimization (MFRO), particle swarm optimization (PSO), and genetic algorithm (GA) identified optimal substrate loadings, achieving a maximum lipase activity of 194.38 U/gds. The addition of a mixture of surfactants (Tween 80, Tween 20, Triton X-100) further increased lipase production to 520.95 U/gds (168.3 % increase). Global sensitivity analysis (GSA) confirmed the important roles of avocado seed, POME, and surfactants in enhancing lipase production. This approach represents a significant advancement in bioprocess scalability.
引用
收藏
页数:13
相关论文
共 68 条
  • [1] Puma optimizer (PO): a novel metaheuristic optimization algorithm and its application in machine learning
    Abdollahzadeh, Benyamin
    Khodadadi, Nima
    Barshandeh, Saeid
    Trojovsky, Pavel
    Gharehchopogh, Farhad Soleimanian
    El-kenawy, El-Sayed M.
    Abualigah, Laith
    Mirjalili, Seyedali
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (04): : 5235 - 5283
  • [2] Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology
    Adetunji, Adegoke Isiaka
    Olaniran, Ademola Olufolahan
    [J]. BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2018, 32 (06) : 1514 - 1526
  • [3] Effective moisture diffusivity of Sierrathrissaleonensis cracker: optimization, sensitivity and uncertainty analyses
    Adeyi, Abiola John
    Adeyi, Oladayo
    Oke, Emmanuel Olusola
    Okonkwo, Clinton E.
    Ogunsola, Akinola David
    [J]. SCIENTIFIC AFRICAN, 2021, 12
  • [4] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [5] Al Mohaini M., 2022, Applied Microbiology, 2673-8007, V2, P237, DOI 10.3390/applmicrobiol2010017
  • [6] Comparative bio-energy potential of De-oiled coconut pulp and Coconut shell: Insights from physicochemical characterization, pyrolysis kinetics and thermodynamic studies
    Alabi, Abdulraheem Ochu
    Sambo, Abubakar Sani
    [J]. FUEL PROCESSING TECHNOLOGY, 2023, 243
  • [7] Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts
    Ali, Mumtaz
    Prasad, Ramendra
    Xiang, Yong
    Yaseen, Zaher Mundher
    [J]. JOURNAL OF HYDROLOGY, 2020, 584
  • [8] Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity
    Ali, Yasser A.
    Awwad, Emad Mahrous
    Al-Razgan, Muna
    Maarouf, Ali
    [J]. PROCESSES, 2023, 11 (02)
  • [9] Optimized biodiesel synthesis from an optimally formulated ternary feedstock blend via machine learning-informed methanolysis using a composite biobased catalyst
    Amenaghawon, Andrew Nosakhare
    Omede, Melissa Osagbemwenorhue
    Ogbebor, Glory Odoekpen
    Eshiemogie, Stanley Aimhanesi
    Igemhokhai, Shedrach
    Evbarunegbe, Nelson Iyore
    Ayere, Joshua Efosa
    Osahon, Blessing Esohe
    Oyefolu, Peter Kayode
    Eshiemogie, Steve Oshiokhai
    Anyalewechi, Chinedu Lewis
    Okedi, Maxwell Ogaga
    Chinemerem, Benita Akachi
    Kusuma, Heri Septya
    Darmokoesoemo, Handoko
    Okoduwa, Ibhadebhunuele Gabriel
    [J]. BIORESOURCE TECHNOLOGY REPORTS, 2024, 25
  • [10] Data-driven intelligent modeling, optimization, and global sensitivity analysis of a xanthan gum biosynthesis process
    Amenaghawon, Andrew Nosakhare
    Igemhokhai, Shedrach
    Eshiemogie, Stanley Aimhanesi
    Ugbodu, Favour
    Evbarunegbe, Nelson Iyore
    [J]. HELIYON, 2024, 10 (03)