Solutions for Lithium Battery Materials Data Issues in Machine Learning: Overview and Future Outlook

被引:0
|
作者
Xue, Pengcheng [1 ]
Qiu, Rui [1 ]
Peng, Chuchuan [2 ]
Peng, Zehang [1 ]
Ding, Kui [1 ]
Long, Rui [2 ]
Ma, Liang [1 ]
Zheng, Qifeng [1 ]
机构
[1] South China Normal Univ, Sch Chem, Guangzhou Key Lab Mat Energy Convers & Storage, Guangzhou 510006, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
data processing strategies; domain knowledge; lithium battery materials; machine learning; OF-CHARGE ESTIMATION; REACTION-KINETICS; NEURAL-NETWORK; STATE; DISCOVERY; PREDICTION; SPECTRA; DESIGN;
D O I
10.1002/advs.202410065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The application of machine learning (ML) techniques in the lithium battery field is relatively new and holds great potential for discovering new materials, optimizing electrochemical processes, and predicting battery life. However, the accuracy of ML predictions is strongly dependent on the underlying data, while the data of lithium battery materials faces many challenges, such as the multi-sources, heterogeneity, high-dimensionality, and small-sample size. Through the systematic review of the existing literatures, several effective strategies are proposed for data processing as follows: classification and extraction, screening and exploration, dimensionality reduction and generation, modeling and evaluation, and incorporation of domain knowledge, with the aim to enhance the data quality, model reliability, and interpretability. Furthermore, other possible strategies for addressing data quality such as database management techniques and data analysis methodologies are also emphasized. At last, an outlook of ML development for data processing methods is presented. These methodologies are not only applicable to the data of lithium battery materials, but also endow important reference significance to electrocatalysis, electrochemical corrosion, high-entropy alloys, and other fields with similar data challenges.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Overview of Machine Learning Methods for Lithium-Ion Battery Remaining Useful Lifetime Prediction
    Jin, Siyu
    Sui, Xin
    Huang, Xinrong
    Wang, Shunli
    Teodorescu, Remus
    Stroe, Daniel-Ioan
    ELECTRONICS, 2021, 10 (24)
  • [2] Leveraging machine learning for accelerated materials innovation in lithium-ion battery: a review
    Li, Rushuai
    Zhao, Wanyu
    Li, Ruimin
    Gan, Chaolun
    Chen, Li
    Wang, Zhitao
    Yang, Xiaowei
    JOURNAL OF ENERGY CHEMISTRY, 2025, 106 : 44 - 62
  • [3] Overview of Machine Learning-Enabled Battery State Estimation Methods
    Zhuge, Yingjian
    Yang, Hengzhao
    Wang, Haoyu
    2023 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, APEC, 2023, : 3028 - 3035
  • [4] Design and Optimization of Multicomponent Electrolytes for Lithium-Sulfur Battery: A Machine Learning Concept and Outlook
    Qiu, Yanhui
    Zuo, Xintao
    Fu, Lichao
    Liu, Dapeng
    Zhang, Yu
    CHEMCATCHEM, 2024, 16 (20)
  • [5] Data mining and machine learning in cancer survival research: An overview and future recommendations
    Kaur, Ishleen
    Doja, M. N.
    Ahmad, Tanvir
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 128
  • [6] Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends
    Alireza Valizadeh
    Mohammad Hossein Amirhosseini
    SN Computer Science, 5 (6)
  • [7] Applications and potentials of machine learning in optoelectronic materials research: An overview and perspectives
    Zhang, Cheng-Zhou
    Fu, Xiao-Qian
    CHINESE PHYSICS B, 2023, 32 (12)
  • [8] Data quantity governance for machine learning in materials science
    Liu, Yue
    Yang, Zhengwei
    Zou, Xinxin
    Ma, Shuchang
    Liu, Dahui
    Avdeev, Maxim
    Shi, Siqi
    NATIONAL SCIENCE REVIEW, 2023, 10 (07)
  • [9] Machine learning of materials design and state prediction for lithium ion batteries
    Mao, Jiale
    Miao, Jiazhi
    Lu, Yingying
    Tong, Zheming
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 37 : 1 - 11
  • [10] Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review
    Chen, Julan
    Qi, Guangheng
    Wang, Kai
    ENERGIES, 2023, 16 (17)