Altering the Solid Electrolyte Interface Through Surface-Modification of Lithium Metal Anode for High-Voltage Lithium Battery

被引:0
作者
Yeddala, Munaiah [1 ]
Butler, Kristina [2 ]
Zhang, Wei [2 ]
Li, Jingnan [2 ]
Lucht, Brett L. [1 ]
机构
[1] Univ Rhode Isl, Dept Chem, Kingston, RI 02881 USA
[2] Albemarle Corp, Kings Mt, NC 28086 USA
关键词
batteries; -; Li-ion; electrolyte; solid electrolyte interphase; CARBONATE ELECTROLYTES; PERFORMANCE; INTERPHASE; SEI; NANOSTRUCTURE; GENERATION; LI;
D O I
10.1149/1945-7111/ad8d12
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The physical structure and chemical composition of the solid electrolyte interphase (SEI) affect the performance of the lithium metal anode. The tuning of the chemical composition and structure of the SEI through the surface modification of the lithium metal anode has been conducted. A series of dicarboxylic acids, oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid have been utilized to modify the surface of the lithium anode. Physical characterization methods have been employed to study the surface morphology and chemical composition of the SEI. Symmetrical (Li/Li) and asymmetrical (NMC622/Li) cells with pristine lithium and surface modified lithium electrodes have been assembled and tested. NMC622/Li cell with surface modified lithium shows improved performance compared to that of pristine lithium. Malonic acid-treated lithium outperforms all the electrodes by retaining 141 mAh g(-1) specific capacity even after 100 cycles of charge-discharge. XPS depth profiling analysis reveals that the SEI on the MA-Li contains evenly distributed organic and inorganic components which are responsible for the performance of MA-Li.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Lithium Batteries and the Solid Electrolyte Interphase (SEI)-Progress and Outlook [J].
Adenusi, Henry ;
Chass, Gregory A. ;
Passerini, Stefano ;
Tian, Kun V. ;
Chen, Guanhua .
ADVANCED ENERGY MATERIALS, 2023, 13 (10)
[2]   Highly Soluble Lithium Nitrate-Containing Additive for Carbonate-Based Electrolyte in Lithium Metal Batteries [J].
Adiraju, Venkata A. K. ;
Chae, Oh B. ;
Robinson, Jerome R. ;
Lucht, Brett L. .
ACS ENERGY LETTERS, 2023, 8 (05) :2440-2446
[3]   Unveiling the Charge Storage Mechanism of Layered and Tunnel Structures of Manganese Oxides as Electrodes for Supercapacitors [J].
Aswathy, R. ;
Munaiah, Y. ;
Ragupathy, P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (07) :A1460-A1468
[4]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[5]   Stabilizing lithium metal using ionic liquids for long-lived batteries [J].
Basile, A. ;
Bhatt, A. I. ;
O'Mullane, A. P. .
NATURE COMMUNICATIONS, 2016, 7
[6]   Lithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries [J].
Becking, Jens ;
Groebmeyer, Albert ;
Kolek, Martin ;
Rodehorst, Uta ;
Schulze, Susanne ;
Winter, Martin ;
Bieker, Peter ;
Stan, Marian Cristian .
ADVANCED MATERIALS INTERFACES, 2017, 4 (16)
[7]   Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes [J].
Brown, Zachary L. ;
Jurng, Sunhyung ;
Cao Cuong Nguyen ;
Lucht, Brett L. .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (07) :3057-3062
[8]   Investigation of the Lithium Solid Electrolyte Interphase in Vinylene Carbonate Electrolytes Using Cu∥LiFePO4 Cells [J].
Brown, Zachary L. ;
Jurng, Sunhyung ;
Lucht, Brett L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (09) :A2186-A2189
[9]   Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes [J].
Chae, Oh B. ;
Lucht, Brett L. .
ADVANCED ENERGY MATERIALS, 2023, 13 (14)
[10]   Performance Improvement of Lithium Metal Batteries Enabled By LiBF3CN as a New Electrolyte Additive [J].
Chae, Oh B. ;
Adiraju, Venkata A. K. ;
Lucht, Brett L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (11)