Ultrasound Versus Elastography in the Diagnosis of Hepatic Steatosis: Evaluation of Traditional Machine Learning Versus Deep Learning

被引:0
|
作者
Marques, Rodrigo [1 ]
Santos, Jaime [2 ]
Andre, Alexandra [3 ]
Silva, Jose [4 ,5 ]
机构
[1] Univ Coimbra, Fac Ciencias & Tecnol, Dept Phys, Rua Larga, P-3004516 Coimbra, Portugal
[2] Univ Coimbra, CEMMPRE ARISE, Dept Elect & Comp Engn, Polo II Rua Silvio Lima, P-3030970 Coimbra, Portugal
[3] Coimbra Hlth Sch, Polytech Inst Coimbra, P-3046854 Coimbra, Portugal
[4] Portuguese Mil Acad, Mil Acad Res Ctr CINAMIL, P-1169203 Lisbon, Portugal
[5] Univ Coimbra, Fac Ciencias & Tecnol, LIBPhys, LA REAL, P-3004516 Coimbra, Portugal
关键词
machine learning; deep learning; image classification; FATTY LIVER-DISEASE;
D O I
10.3390/s24237568
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The prevalence of fatty liver disease is on the rise, posing a significant global health concern. If left untreated, it can progress into more serious liver diseases. Therefore, accurately diagnosing the condition at an early stage is essential for more effective intervention and management. This study uses images acquired via ultrasound and elastography to classify liver steatosis using classical machine learning classifiers, including random forest and support vector machine, as well as deep learning architectures, such as ResNet50V2 and DenseNet-201. The neural network demonstrated the most optimal performance, achieving an F1 score of 99.5% on the ultrasound dataset, 99.2% on the elastography dataset, and 98.9% on the mixed dataset. The results from the deep learning approach are comparable to those of machine learning, despite objectively not achieving the highest results. This research offers valuable insights into the domain of medical image classification and advocates the integration of advanced machine learning and deep learning technologies in diagnosing steatosis.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Traditional Machine Learning Methods versus Deep Learning for Meningioma Classification, Grading, Outcome Prediction, and Segmentation: A Systematic Review and Meta-Analysis
    Maniar, Krish M.
    Lassaren, Philipp
    Rana, Aakanksha
    Yao, Yuxin
    Tewarie, Ishaan A.
    Gerstl, Jakob V. E.
    Blanco, Camila M. Recio
    Power, Liam H.
    Mammi, Marco
    Mattie, Heather
    Smith, Timothy R.
    Mekary, Rania A.
    WORLD NEUROSURGERY, 2023, 179 : E119 - E134
  • [42] Machine learning versus guideline recommended pathways for the diagnosis of myocardial infarction
    Boeddinghaus, J.
    Duodesis, D.
    Lopez-Ayala, P.
    Lee, K. K.
    Koechlin, L.
    Nestelberger, T.
    Gimenez, M. Rubini
    Wildi, K.
    Mills, N. L.
    Mueller, C.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [43] Cascaded Deep Learning Neural Network for Automated Liver Steatosis Diagnosis Using Ultrasound Images
    Rhyou, Se-Yeol
    Yoo, Jae-Chern
    SENSORS, 2021, 21 (16)
  • [44] Quantification of hepatic steatosis in histologic images by deep learning method
    Yang, Fan
    Jia, Xianyuan
    Lei, Pinggui
    He, Yan
    Xiang, Yining
    Jiao, Jun
    Zhou, Shi
    Qian, Wei
    Duan, Qinghong
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2019, 27 (06) : 1033 - 1045
  • [45] Comparison of Radiologists and Deep Learning for US Grading of Hepatic Steatosis
    Vianna, Pedro
    Calce, Sara-Ivana
    Boustros, Pamela
    Larocque-Rigney, Cassandra
    Patry-Beaudoin, Laurent
    Luo, Yi Hui
    Aslan, Emre
    Marinos, John
    Alamri, Talal M.
    Vu, Kim-Nhien
    Murphy-Lavallee, Jessica
    Billiard, Jean-Sebastien
    Montagnon, Emmanuel
    Li, Hongliang
    Kadoury, Samuel
    Nguyen, Bich N.
    Gauthier, Shanel
    Therien, Benjamin
    Rish, Irina
    Belilovsky, Eugene
    Wolf, Guy
    Chasse, Michael
    Cloutier, Guy
    Tang, An
    RADIOLOGY, 2023, 309 (01)
  • [46] MACHINE LEARNING - EXPLANATIONS VERSUS NUMBERS
    KODRATOFF, Y
    ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1989, 44 (5-6): : 251 - 264
  • [47] Machine learning versus statistical modeling
    Boulesteix, Anne-Laure
    Schmid, Matthias
    BIOMETRICAL JOURNAL, 2014, 56 (04) : 588 - 593
  • [48] Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods
    Burlina, Philippe
    Billings, Seth
    Joshi, Neil
    Albayda, Jemima
    PLOS ONE, 2017, 12 (08):
  • [49] TRADITIONAL ASSESSMENT OF LEARNING VERSUS ONLINE ASSESSMENT
    Cazan, Ana-Maria
    Indreica, Simona Elena
    LET'S BUILD THE FUTURE THROUGH LEARNING INNOVATION!, VOL III, 2014, : 96 - 101
  • [50] The application of traditional machine learning and deep learning techniques in mammography: a review
    Gao, Ying'e
    Lin, Jingjing
    Zhou, Yuzhuo
    Lin, Rongjin
    FRONTIERS IN ONCOLOGY, 2023, 13