Trend Analysis of High-Resolution Soil Moisture Data Based on GAN in the Three-River-Source Region During the 21st Century

被引:0
作者
Li, Zhuoqun [1 ,2 ]
Luo, Siqiong [1 ]
Tan, Xiaoqing [1 ,2 ]
Wang, Jingyuan [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Cryospher Sci & Frozen Soil Engn, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国科学院西部之光基金; 中国国家自然科学基金;
关键词
soil moisture; statistical downscaling; CMIP6; Generative Adversarial Network; deep learning; Three-River-Source Region; INTERCOMPARISON PROJECT SCENARIOMIP; CLIMATE; VEGETATION;
D O I
10.3390/rs16234367
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil moisture (SM) is a crucial factor in land-atmosphere interactions and climate systems, affecting surface energy, water budgets, and weather extremes. In the Three-River-Source Region (TRSR) of China, rapid climate change necessitates precise SM monitoring. This study employs a novel UNet-Gan model to integrate and downscale SM data from 17 CMIP6 models, producing a high-resolution (0.1 degrees) dataset called CMIP6UNet-Gan. This dataset includes SM data for five depth layers (0-10 cm, 10-30 cm, 30-50 cm, 50-80 cm, 80-110 cm), four Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). The UNet-Gan model demonstrates strong performance in data fusion and downscaling, especially in shallow soil layers. Analysis of the CMIP6UNet-Gan dataset reveals an overall increasing trend in SM across all layers, with higher rates under more intense emission scenarios. Spatially, moisture increases vary, with significant trends in the western Yangtze and northeastern Yellow River regions. Deeper soils show a slower response to climate change, and seasonal variations indicate that moisture increases are most pronounced in spring and winter, followed by autumn, with the least increase observed in summer. Future projections suggest higher moisture increase rates in the early and late 21st century compared to the mid-century. By the end of this century (2071-2100), compared to the Historical period (1995-2014), the increase in SM across the five depth layers ranges from: 5.5% to 11.5%, 4.6% to 9.2%, 4.3% to 7.5%, 4.5% to 7.5%, and 3.3% to 6.5%, respectively.
引用
收藏
页数:27
相关论文
共 58 条
[11]   Numerical modelling of the responses of soil temperature and soil moisture to climate change over the Tibetan Plateau, 1961-2010 [J].
Fang, Xuewei ;
Lyu, Shihua ;
Cheng, Chen ;
Li, Zhaoguo ;
Zhang, Shaobo .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (08) :4134-4150
[12]   Merging and Downscaling Soil Moisture Data From CMIP6 Projections Using Deep Learning Method [J].
Feng, Donghan ;
Wang, Guojie ;
Wei, Xikun ;
Amankwah, Solomon Obiri Yeboah ;
Hu, Yifan ;
Luo, Zicong ;
Hagan, Daniel Fiifi Tawia ;
Ullah, Waheed .
FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
[13]   A high-resolution daily global dataset of statistically downscaled CMIP6 models for climate impact analyses [J].
Gebrechorkos, Solomon ;
Leyland, Julian ;
Slater, Louise ;
Wortmann, Michel ;
Ashworth, Philip J. ;
Bennett, Georgina L. ;
Boothroyd, Richard ;
Cloke, Hannah ;
Delorme, Pauline ;
Griffith, Helen ;
Hardy, Richard ;
Hawker, Laurence ;
Mclelland, Stuart ;
Neal, Jeffrey ;
Nicholas, Andrew ;
Tatem, Andrew J. ;
Vahidi, Ellie ;
Parsons, Daniel R. ;
Darby, Stephen E. .
SCIENTIFIC DATA, 2023, 10 (01)
[14]   Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951-2020) [J].
Gomis-Cebolla, Jose ;
Rattayova, Viera ;
Salazar-Galan, Sergio ;
Frances, Felix .
ATMOSPHERIC RESEARCH, 2023, 284
[15]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[16]  
Goodman DSG, 2004, CHINA QUART, P379
[17]   CMIP6 MultiModel Evaluation of Present-Day Heatwave Attributes [J].
Hirsch, Annette L. ;
Ridder, Nina N. ;
Perkins-Kirkpatrick, Sarah E. ;
Ukkola, Anna .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (22)
[18]  
Huang HM, 2020, INT CONF ACOUST SPEE, P1055, DOI [10.1109/ICASSP40776.2020.9053405, 10.1109/icassp40776.2020.9053405]
[19]   Soil moisture-atmosphere feedback dominates land carbon uptake variability [J].
Humphrey, Vincent ;
Berg, Alexis ;
Ciais, Philippe ;
Gentine, Pierre ;
Jung, Martin ;
Reichstein, Markus ;
Seneviratne, Sonia I. ;
Frankenberg, Christian .
NATURE, 2021, 592 (7852) :65-+
[20]  
Hussain Md, 2019, J OPEN SOURCE SOFTW, V4, P1556, DOI DOI 10.21105/JOSS.01556