Trend Analysis of High-Resolution Soil Moisture Data Based on GAN in the Three-River-Source Region During the 21st Century

被引:0
作者
Li, Zhuoqun [1 ,2 ]
Luo, Siqiong [1 ]
Tan, Xiaoqing [1 ,2 ]
Wang, Jingyuan [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, Key Lab Cryospher Sci & Frozen Soil Engn, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国科学院西部之光基金; 中国国家自然科学基金;
关键词
soil moisture; statistical downscaling; CMIP6; Generative Adversarial Network; deep learning; Three-River-Source Region; INTERCOMPARISON PROJECT SCENARIOMIP; CLIMATE; VEGETATION;
D O I
10.3390/rs16234367
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil moisture (SM) is a crucial factor in land-atmosphere interactions and climate systems, affecting surface energy, water budgets, and weather extremes. In the Three-River-Source Region (TRSR) of China, rapid climate change necessitates precise SM monitoring. This study employs a novel UNet-Gan model to integrate and downscale SM data from 17 CMIP6 models, producing a high-resolution (0.1 degrees) dataset called CMIP6UNet-Gan. This dataset includes SM data for five depth layers (0-10 cm, 10-30 cm, 30-50 cm, 50-80 cm, 80-110 cm), four Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5). The UNet-Gan model demonstrates strong performance in data fusion and downscaling, especially in shallow soil layers. Analysis of the CMIP6UNet-Gan dataset reveals an overall increasing trend in SM across all layers, with higher rates under more intense emission scenarios. Spatially, moisture increases vary, with significant trends in the western Yangtze and northeastern Yellow River regions. Deeper soils show a slower response to climate change, and seasonal variations indicate that moisture increases are most pronounced in spring and winter, followed by autumn, with the least increase observed in summer. Future projections suggest higher moisture increase rates in the early and late 21st century compared to the mid-century. By the end of this century (2071-2100), compared to the Historical period (1995-2014), the increase in SM across the five depth layers ranges from: 5.5% to 11.5%, 4.6% to 9.2%, 4.3% to 7.5%, 4.5% to 7.5%, and 3.3% to 6.5%, respectively.
引用
收藏
页数:27
相关论文
共 58 条
[1]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[2]   High-resolution observations from space to address new applications in hydrology [J].
Brocca, Luca ;
Zhao, Wei ;
Lu, Hui .
INNOVATION, 2023, 4 (03)
[3]   Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios [J].
Cook, B. I. ;
Mankin, J. S. ;
Marvel, K. ;
Williams, A. P. ;
Smerdon, J. E. ;
Anchukaitis, K. J. .
EARTHS FUTURE, 2020, 8 (06)
[4]   Generative Adversarial Networks An overview [J].
Creswell, Antonia ;
White, Tom ;
Dumoulin, Vincent ;
Arulkumaran, Kai ;
Sengupta, Biswa ;
Bharath, Anil A. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :53-65
[5]   A spatio-temporal continuous soil moisture dataset over the Tibet Plateau from 2002 to 2015 [J].
Cui, Yaokui ;
Zeng, Chao ;
Zhou, Jie ;
Xie, Hongjie ;
Wan, Wei ;
Hu, Ling ;
Xiong, Wentao ;
Chen, Xi ;
Fan, Wenjie ;
Hong, Yang .
SCIENTIFIC DATA, 2019, 6 (1)
[6]   Validation of SMOS Soil Moisture Products over the Maqu and Twente Regions [J].
Dente, Laura ;
Su, Zhongbo ;
Wen, Jun .
SENSORS, 2012, 12 (08) :9965-9986
[7]   A multimodel ensemble machine learning approach for CMIP6 climate model projections in an Indian River basin [J].
Dey, Aiendrila ;
Sahoo, Debi Prasad ;
Kumar, Rohini ;
Remesan, Renji .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (16) :9215-9236
[8]   Soil Texture Often Exerts a Stronger Influence Than Precipitation on Mesoscale Soil Moisture Patterns [J].
Dong, Jingnuo ;
Ochsner, Tyson E. .
WATER RESOURCES RESEARCH, 2018, 54 (03) :2199-2211
[9]   Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network [J].
Dorigo, W. A. ;
Xaver, A. ;
Vreugdenhil, M. ;
Gruber, A. ;
Hegyiova, A. ;
Sanchis-Dufau, A. D. ;
Zamojski, D. ;
Cordes, C. ;
Wagner, W. ;
Drusch, M. .
VADOSE ZONE JOURNAL, 2013, 12 (03)
[10]   The International Soil Moisture Network: serving Earth system science for over a decade [J].
Dorigo, Wouter ;
Himmelbauer, Irene ;
Aberer, Daniel ;
Schremmer, Lukas ;
Petrakovic, Ivana ;
Zappa, Luca ;
Preimesberger, Wolfgang ;
Xaver, Angelika ;
Annor, Frank ;
Ardo, Jonas ;
Baldocchi, Dennis ;
Bitelli, Marco ;
Bloeschl, Gunter ;
Bogena, Heye ;
Brocca, Luca ;
Calvet, Jean-Christophe ;
Julio Camarero, J. ;
Capello, Giorgio ;
Choi, Minha ;
Cosh, Michael C. ;
van de Giesen, Nick ;
Hajdu, Istvan ;
Ikonen, Jaakko ;
Jensen, Karsten H. ;
Kanniah, Kasturi Devi ;
de Kat, Ileen ;
Kirchengast, Gottfried ;
Rai, Pankaj Kumar ;
Kyrouac, Jenni ;
Larson, Kristine ;
Liu, Suxia ;
Loew, Alexander ;
Moghaddam, Mahta ;
Martinez Fernandez, Jose ;
Mattar Bader, Cristian ;
Morbidelli, Renato ;
Musial, Jan P. ;
Osenga, Elise ;
Palecki, Michael A. ;
Pellarin, Thierry ;
Petropoulos, George P. ;
Pfeil, Isabella ;
Powers, Jarrett ;
Robock, Alan ;
Rudiger, Christoph ;
Rummel, Udo ;
Strobel, Michael ;
Su, Zhongbo ;
Sullivan, Ryan ;
Tagesson, Torbern .
HYDROLOGY AND EARTH SYSTEM SCIENCES, 2021, 25 (11) :5749-5804