Distance of mean embedding for testing independence of functional data

被引:0
|
作者
Krzysko, Miroslaw [1 ]
Smaga, Lukasz [2 ]
Wydra, Jedrzej [3 ,4 ]
机构
[1] Univ Kalisz, Interfac Dept Math & Stat, Ul Nowy Swiat 4, Kalisz, Poland
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Uniwersytetu Poznanskiego 4, Poznan, Poland
[3] Adam Mickiewicz Univ, Criminalist Res Unit, Al Niepodleglosci 53, Poznan, Poland
[4] Adam Mickiewicz Univ, Ctr Adv Technol, Ul Uniwersytetu Poznahskiego 10, Poznan, Poland
关键词
Basis expansion; Covariance-based tests; Distance of mean embedding; Functional data analysis; Independence testing; VARIABLE SELECTION; DEPENDENCE; REGRESSION;
D O I
10.1016/j.sigpro.2025.109959
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate independence testing for functional data, which maybe either univariate or multivariate. Broadly speaking, our approach involves first reducing the dimensionality of the functional data using basis expansion and then applying the distance of mean embedding- a flexible measure of independence. We enhance this method for pairwise independence by incorporating marginal aggregation, as well as asymmetric and symmetric aggregation measures, to improve test performance and adapt it to mutual independence testing. Our methods are compared with tests based on distance covariance and the Hilbert-Schmidt independence criterion. To evaluate their effectiveness, we present simulation studies and two real data examples using air pollution and chemometric data sets. The new testing procedures demonstrate favorable finite-sample properties, effectively controlling the type I error rate and exhibiting competitive power, making them viable alternatives to covariance-based tests.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Testing conditional mean independence for functional data
    Lee, C. E.
    Zhang, X.
    Shao, X.
    BIOMETRIKA, 2020, 107 (02) : 331 - 346
  • [2] Testing serial independence with functional data
    Hlavka, Zdenek
    Huskova, Marie
    Meintanis, Simos G.
    TEST, 2021, 30 (03) : 603 - 629
  • [3] Testing serial independence with functional data
    Zdeněk Hlávka
    Marie Hušková
    Simos G. Meintanis
    TEST, 2021, 30 : 603 - 629
  • [4] Kernel mean embedding of probability measures and its applications to functional data analysis
    Hayati, Saeed
    Fukumizu, Kenji
    Parvardeh, Afshin
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (02) : 447 - 484
  • [5] Conditional independence testing in Hilbert spaces with applications to functional data analysis
    Lundborg, Anton Rask
    Shah, Rajen D.
    Peters, Jonas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (05) : 1821 - 1850
  • [6] Testing Conditional Mean Independence Under Symmetry
    Chen, Tao
    Ji, Yuanyuan
    Zhou, Yahong
    Zhu, Pingfang
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2018, 36 (04) : 615 - 627
  • [7] HYPOTHESIS TESTING FOR MULTIPLE MEAN AND CORRELATION CURVES WITH FUNCTIONAL DATA
    Yuan, Ao
    Fang, Hong-Bin
    Li, Haiou
    Wu, Colin O.
    Tan, Ming T.
    STATISTICA SINICA, 2020, 30 (02) : 1095 - 1116
  • [8] INDEPENDENCE TESTING OF PERCENTAGE DATA
    WORONOW, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 194 : 56 - GEOC
  • [9] Test of independence for functional data
    Horvath, Lajos
    Huskova, Marie
    Rice, Gregory
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 117 : 100 - 119
  • [10] On testing independence with right truncated data
    Gurler, U
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) : 3201 - 3206