Circuit and Graver walks and linear and integer programming

被引:0
|
作者
Onn, Shmuel [1 ]
机构
[1] Technion Israel Inst Technol, Haifa, Israel
基金
美国国家科学基金会;
关键词
Linear programming; Integer programming; Circuit; Graver basis; Polytope;
D O I
10.1016/j.disopt.2024.100862
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that a circuit walk from a given feasible point of a given linear program to an optimal point can be computed in polynomial time using only linear algebra operations and the solution of the single given linear program. We also show that a Graver walk from a given feasible point of a given integer program to an optimal point is polynomial time computable using an integer programming oracle, but without such an oracle, it is hard to compute such a walk even if an optimal solution to the given program is given as well. Combining our oracle algorithm with recent results on sparse integer programming, we also show that Graver walks from any point are polynomial time computable over matrices of bounded tree-depth and subdeterminants.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The Graver Complexity of Integer Programming
    Yael Berstein
    Shmuel Onn
    Annals of Combinatorics, 2009, 13 : 289 - 296
  • [2] The Graver Complexity of Integer Programming
    Berstein, Yael
    Onn, Shmuel
    ANNALS OF COMBINATORICS, 2009, 13 (03) : 289 - 296
  • [3] Characterization of matrices with bounded Graver bases and depth parameters and applications to integer programming
    Brianski, Marcin
    Koutecky, Martin
    Kral, Daniel
    Pekarkova, Kristyna
    Schroder, Felix
    MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) : 497 - 531
  • [4] Developments in linear and integer programming
    Darby-Dowman, K
    Wilson, JM
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2002, 53 (10) : 1065 - 1071
  • [5] ON AUGMENTATION ALGORITHMS FOR LINEAR AND INTEGER-LINEAR PROGRAMMING: FROM EDMONDS-KARP TO BLAND AND BEYOND
    De Loera, Jesus A.
    Hemmecke, Raymond
    Lee, Jon
    SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (04) : 2494 - 2511
  • [6] An Increasing-Mapping Approach to Integer Programming Based on Lexicographic Ordering and Linear Programming
    Dang, Chuangyin
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 55 - 60
  • [7] A NOTE ON AN INTEGER PROGRAMMING PROBLEM THAT HAS A LINEAR PROGRAMMING SOLUTION
    Ritchey, Nathan P.
    Wingler, Eric J.
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2013, 25 (01) : 98 - 102
  • [8] Integer linear programming models for global routing
    Behjat, Laleh
    Vannelli, Anthony
    Rosehart, William
    INFORMS JOURNAL ON COMPUTING, 2006, 18 (02) : 137 - 150
  • [9] An isometric surface method for integer linear programming
    Niey, YY
    Su, LJ
    Li, C
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (07) : 835 - 844
  • [10] The quadratic Graver cone, quadratic integer minimization, and extensions
    Lee, Jon
    Onn, Shmuel
    Romanchuk, Lyubov
    Weismantel, Robert
    MATHEMATICAL PROGRAMMING, 2012, 136 (02) : 301 - 323