Continuity of the solution set mappings to parametric unified weak vector equilibrium problems via free-disposal sets

被引:18
作者
Zhou, Daqiong [1 ,2 ]
Peng, Zaiyun [1 ]
Lin, Zhi [1 ]
Wang, Jingjing [1 ,3 ]
机构
[1] Chongqing JiaoTong Univ, Coll Math & Stat, Chongqing 400047, Peoples R China
[2] Chongqing City Vocat Coll, Chongqing 402106, Peoples R China
[3] Chongqing Univ Sci & Technol, Sch Math Phys & Big data, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Parametric unified vector equilibrium problem; free-disposal set; nonlinear scalarization function; semicontinuity; EFFICIENT SOLUTIONS; LOWER SEMICONTINUITY; STABILITY;
D O I
10.1051/ro/2024028
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, the lower and upper semicontinuity of the solution mappings for parametric unified weak vector equilibrium problem (PUWVEP) are established, via free-disposal set and non-linear scalarization function. Moreover, example is given to illustrate the obtained results. The results improve the corresponding ones in the literature [Z.Y. Peng and S.S. Chang, Optim. Lett. (2014) 8 159-169.], [Z.Y. Peng, X.B. Li, X.J. Long and X.D. Fan, Optim. Lett. (2018) 12 1339-1356.], [Z.Y. Peng, J.W. Peng, X.J. Long and J.C. Yao, J. Global Optim. 70 (2018) 55-69.].
引用
收藏
页码:5301 / 5308
页数:8
相关论文
共 18 条
[1]  
Aubin J P, 1984, APPL NONLINEAR ANAL
[2]   Holder continuity results for nonconvex parametric generalized vector quasiequilibrium problems via nonlinear scalarizing functions [J].
Chen, Chun-Rong ;
Li, Li-Li ;
Li, Ming-Hua .
OPTIMIZATION, 2016, 65 (01) :35-51
[3]  
Chen X.X., 2005, Vector Optimization: Set-valued and Variational Analysis
[4]   Vector Optimization Problems via Improvement Sets [J].
Chicco, M. ;
Mignanego, F. ;
Pusillo, L. ;
Tijs, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (03) :516-529
[5]   Fuzzy necessary optimality conditions for vector optimization problems [J].
Durea, Marius ;
Tammer, Christiane .
OPTIMIZATION, 2009, 58 (04) :449-467
[6]  
Gerstewitz C., 1983, Wiss Z TH Leuna-Merseburg, V25, P357
[7]   NONCONVEX SEPARATION THEOREMS AND SOME APPLICATIONS IN VECTOR OPTIMIZATION [J].
GERTH, C ;
WEIDNER, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1990, 67 (02) :297-320
[8]  
Gpfert A., 2003, Variational methods in partially ordered spaces
[9]   Improvement sets and vector optimization [J].
Gutierrez, C. ;
Jimenez, B. ;
Novo, V. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 223 (02) :304-311
[10]   SOME CHARACTERIZATIONS OF THE APPROXIMATE SOLUTIONS TO GENERALIZED VECTOR EQUILIBRIUM PROBLEMS [J].
Han, Yu ;
Huang, Nan-Jing .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2016, 12 (03) :1135-1151