LEARNING SPATIOTEMPORAL FEATURES FROM INCOMPLETE DATA FOR TRAFFIC FLOW PREDICTION USING HYBRID DEEP NEURAL NETWORKS

被引:0
|
作者
Ghazi, Mehdi Mehdipour [1 ]
Ramezani, Amin [2 ]
Siahi, Mehdi [1 ]
Ghazi, Mostafa Mehdipour [3 ]
机构
[1] Faculty of Mechanics, Electrical and Computer Science, Research Branch IAU, Tehran, Iran
[2] Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
[3] Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
来源
arXiv | 2022年
关键词
Convolutional neural network - Deep learning - Hybrid deep neural network - Hybrid network - Imputation techniques - Missing data imputations - Missing values - Performance measurement system - Traffic flow - Traffic flow prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Spatiotemporal Traffic Flow Forecasting for PHETs Based on Data Mining and Deep Learning
    Luo, Xiangzhou
    Qing, Xushan
    Chen, Huimiao
    2019 IEEE 19TH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2019), 2019,
  • [32] Urban flow prediction from spatiotemporal data using machine learning: A survey
    Xie, Peng
    Li, Tianrui
    Liu, Jia
    Du, Shengdong
    Yang, Xin
    Zhang, Junbo
    INFORMATION FUSION, 2020, 59 : 1 - 12
  • [33] Video source traffic flow prediction using neural networks
    Bhattacharya, A
    Parlos, AG
    Atiya, AF
    PROCEEDINGS OF THE 46TH IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS & SYSTEMS, VOLS 1-3, 2003, : 33 - 38
  • [34] Traffic Flow Prediction Using Graph Convolution Neural Networks
    Agafonov, Anton
    2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 91 - 95
  • [35] AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks
    Zhang, Wei
    Zhu, Fenghua
    Lv, Yisheng
    Tan, Chang
    Liu, Wen
    Zhang, Xin
    Wang, Fei-Yue
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 139
  • [36] Traffic Data Imputation Using Deep Convolutional Neural Networks
    Benkraouda, Ouafa
    Thodi, Bilal Thonnam
    Yeo, Hwasoo
    Menendez, Monica
    Jabari, Saif Eddin
    IEEE ACCESS, 2020, 8 (08): : 104740 - 104752
  • [37] Motorway Traffic Flow Prediction using Advanced Deep Learning
    Mihaita, Adriana-Simona
    Li, Haowen
    He, Zongyang
    Rizoiu, Marian-Andrei
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 1683 - 1690
  • [38] Road traffic flow prediction using deep transfer learning
    Wang, Bin
    Yan, Zheng
    Lu, Jie
    Zhang, Guangquan
    Li, Tianrui
    DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 : 331 - 338
  • [39] Traffic Flow Prediction Based on Hybrid Deep Learning Models Considering Missing Data and Multiple Factors
    Zeng, Wenbao
    Wang, Ketong
    Zhou, Jianghua
    Cheng, Rongjun
    SUSTAINABILITY, 2023, 15 (14)
  • [40] Internet traffic prediction with deep neural networks
    Jiang, Weiwei
    INTERNET TECHNOLOGY LETTERS, 2022, 5 (02)