Distinguishing Resting State From Motor Imagery Swallowing Using EEG and Deep Learning Models

被引:0
|
作者
Aslan, Sevgi Gokce [1 ,2 ]
Yilmaz, Bulent [3 ,4 ]
机构
[1] Abdullah Gul Univ, Dept Elect & Comp Engn, TR-38080 Kayseri, Turkiye
[2] Inonu Univ, Dept Biomed Engn Dept, TR-44280 Malatya, Turkiye
[3] Gulf Univ Sci & Technol GUST, GUST Engn & Appl Innovat Res Ctr GEAR, Hawally 32093, Kuwait
[4] Gulf Univ Sci & Technol GUST, Dept Elect & Comp Engn, Hawally 32093, Kuwait
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Electroencephalography; Motors; Time-frequency analysis; Filtering; Tongue; Deep learning; Brain modeling; Spectrogram; Empirical mode decomposition; Continuous wavelet transforms; EEG; motor imagery; scalogram; spectrogram; swallowing; DYSPHAGIA REHABILITATION; COMPONENTS; VISCOSITY; NETWORKS; SIGNAL; TASKS;
D O I
10.1109/ACCESS.2024.3501013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The primary aim of this study was to assess the classification performance of deep learning models in distinguishing between resting state and motor imagery swallowing, utilizing various preprocessing and data visualization techniques applied to electroencephalography (EEG) data. In this study, we performed experiments using four distinct paradigms such as natural swallowing, induced saliva swallowing, induced water swallowing, and induced tongue protrusion on 30 right-handed individuals (aged 18 to 56). We utilized a 16-channel wearable EEG headset. We thoroughly investigated the impact of different preprocessing methods (Independent Component Analysis, Empirical Mode Decomposition, bandpass filtering) and visualization techniques (spectrograms, scalograms) on the classification performance of multichannel EEG signals. Additionally, we explored the utilization and potential contributions of deep learning models, particularly Convolutional Neural Networks (CNNs), in EEG-based classification processes. The novelty of this study lies in its comprehensive examination of the potential of deep learning models, specifically in distinguishing between resting state and motor imagery swallowing processes, using a diverse combination of EEG signal preprocessing and visualization techniques. The results showed that it was possible to distinguish the resting state from the imagination of swallowing with 89.8% accuracy, especially using continuous wavelet transform (CWT) based scalograms. The findings of this study may provide significant contributions to the development of effective methods for the rehabilitation and treatment of swallowing difficulties based on motor imagery-based brain computer interfaces.
引用
收藏
页码:178375 / 178389
页数:15
相关论文
共 50 条
  • [41] Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
    Tibrewal, Navneet
    Leeuwis, Nikki
    Alimardani, Maryam
    PLOS ONE, 2022, 17 (07):
  • [42] CNN models for EEG motor imagery signal classification
    Alnaanah, Mahmoud
    Wahdow, Moutz
    Alrashdan, Mohd
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (03) : 825 - 830
  • [43] Performance Analysis of Deep Learning Models for Detection of Autism Spectrum Disorder from EEG Signals
    Radhakrishnan, Menaka
    Ramamurthy, Karthik
    Choudhury, Kaustav Kumar
    Won, Daehan
    Manoharan, Thanga Aarthy
    TRAITEMENT DU SIGNAL, 2021, 38 (03) : 853 - 863
  • [44] Subject-Invariant Deep Neural Networks Based on Baseline Correction for EEG Motor Imagery BCI
    Kwak, Youngchul
    Kong, Kyeongbo
    Song, Woo-Jin
    Kim, Seong-Eun
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (04) : 1801 - 1812
  • [45] Motor Imagery EEG Signal Processing and Classification using Machine Learning Approach
    Sreeja, S. R.
    Rabha, Joytirmoy
    Nagarjuna, K. Y.
    Samanta, Debasis
    Mitra, Pabitra
    Sarma, Monalisa
    2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2017, : 61 - 66
  • [46] An in-depth survey on Deep Learning-based Motor Imagery Electroencephalogram (EEG) classification
    Wang, Xianheng
    Liesaputra, Veronica
    Liu, Zhaobin
    Wang, Yi
    Huang, Zhiyi
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 147
  • [47] Classification of Motor Imagery EEG Signals Using Machine Learning
    Abdeltawab, Amr
    Ahmad, Anita
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2020, : 196 - 201
  • [48] Motor Imagery EEG Signal Classification Using Deep Neural Networks
    Nakra, Abhilasha
    Duhan, Manoj
    COMPUTING SCIENCE, COMMUNICATION AND SECURITY, 2022, 1604 : 128 - 140
  • [49] AutoEncoder Filter Bank Common Spatial Patterns to Decode Motor Imagery From EEG
    Mammone, Nadia
    Ieracitano, Cosimo
    Adeli, Hojjat
    Morabito, Francesco C.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (05) : 2365 - 2376
  • [50] NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework
    Cho, Jeong-Hyun
    Jeong, Ji-Hoon
    Lee, Seong-Whan
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13279 - 13292