Carboxylesterase-activatable multi-in-one nanoplatform for near-infrared fluorescence imaging guided chemo/photodynamic/sonodynamic therapy toward cervical cancer

被引:0
|
作者
Li, Lihong [1 ,2 ,3 ]
Hu, Rongrong [1 ]
Zhang, Xinyu [1 ,4 ]
Liu, Guangyang [1 ,4 ]
Liu, Wen [1 ,2 ,3 ]
Wang, Haojiang [1 ,2 ]
Wang, Bin [1 ]
Guo, Lixia [1 ]
Ma, Sufang [1 ,2 ]
Yan, Lili [1 ,2 ]
Zhang, Boye [1 ]
Zhang, Chengwu [1 ]
Diao, Haipeng [1 ,3 ]
机构
[1] Shanxi Med Univ, Coll Basic Med Sci, Taiyuan 030001, Peoples R China
[2] Shanxi Med Univ, Dept Chem, Taiyuan 030001, Peoples R China
[3] Shanxi Med Univ, Key Lab Cellular Physiol, Minist Educ, Jinzhong, Peoples R China
[4] Shanxi Med Univ, Sch Pharm, Taiyuan 030001, Peoples R China
关键词
Carboxylesterase-responsive release; Combined therapy; Activatable near-infrared fluorescence imaging; DRUG-DELIVERY; NANOPARTICLES;
D O I
10.1016/j.ijbiomac.2024.137899
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Traditional tumor treatment faces great challenge owning to inherent drawbacks. Activatable prodrugs with multi-modality therapeutic capacity are highly desired. In this consideration, a responsiveness-released multi-inone nanoplatform, PLGA-PEG@HC, toward cervical cancer therapy was innovatively developed. Among the nanoplatform, HC was constructed by incorporating chlorambucil, a classic chemotherapy drug into a nearinfrared photo- and sono-sensitizer, HCH via ester linker, which can be specifically hydrolyzed by carboxylesterase (CES). HC is scarcely fluorescent and toxic due to the caging of HCH and chlorambucil, thus achieving low background signal and minimal side effects. However, once selectively hydrolyzed by tumor enriched CES, ester bond will be broken. Consequently, HCH and chlorambucil are released so as to achieve near-infrared fluorescence imaging and synergistic photodynamic/sonodynamic/chemo therapy. PLGA-PEG packaging ensures the biocompatibility of HC. The as-obtained nanoplatform, with diameter of 97 nm, achieves tumor targeting capacity via EPR. In vitro and in vivo applications have demonstrated that PLGA-PEG@HC can accumulate in tumor tissues, exhibit CES-activatable near-infrared fluorescence imaging and efficient tumor suppression capacity. Compared with the reported combinational therapy materials which are complex in compositions, PLGA-PEG@HC is simple in formulation but demonstrates near-infrared fluorescence traced and considerable therapy efficacy toward tumors, which may accelerate the clinical translation.
引用
收藏
页数:10
相关论文
共 23 条
  • [21] Amorphous Ag2-xCuxS quantum dots: "all-in-one" theranostic nanomedicines for near-infrared fluorescence/photoacoustics dual-modal-imaging-guided photothermal therapy
    Zhao, Yangyang
    Song, Miao
    Yang, Xiaoguang
    Yang, Jian
    Du, Chunyan
    Wang, Guannan
    Yi, Jingwen
    Shan, Guiye
    Li, Dongsheng
    Liu, Lei
    Yan, Dongmei
    Li, Yuxin
    Liu, Xiaojie
    CHEMICAL ENGINEERING JOURNAL, 2020, 399 (399)
  • [22] Indocyanine Green-Loaded Silver Nanoparticle@Polyaniline Core/Shell Theranostic Nanocomposites for Photoacoustic/Near-Infrared Fluorescence Imaging-Guided and Single-Light-Triggered Photothermal and Photodynamic Therapy
    Tan, Xiaoxiao
    Wang, Jinping
    Pang, Xiaojuan
    Liu, Li
    Sun, Qi
    You, Qing
    Tan, Fengping
    Li, Nan
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (51) : 34991 - 35003
  • [23] D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy
    Xing, Xuejian
    Zhu, Pan
    Pang, E.
    Zhao, Shaojing
    Tang, Yu
    Hu, Zheyu
    Ouyang, Quchang
    Lan, Minhuan
    CHINESE CHEMICAL LETTERS, 2024, 35 (10)