Electromagnetic irradiation-assisted synthesis, exfoliation and modification of graphene-based materials for energy storage and sensing applications

被引:6
作者
Kumar, Rajesh [1 ]
Sahoo, Sumanta [2 ]
Pandey, Raghvendra [3 ]
Joanni, Ednan [4 ]
Yadav, Ram Manohar [5 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
[2] Yeungnam Univ, Sch Chem Engn, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
[3] Univ Delhi, ARSD Coll, Dept Phys, New Delhi 110021, India
[4] Ctr Informat Technol Renato Archer CTI, BR-13069901 Campinas, SP, Brazil
[5] Univ Allahabad, Dept Phys, Prayagraj 211002, Uttar Pradesh, India
基金
新加坡国家研究基金会;
关键词
Light energy; Photon; Irradiation; Photo-thermal energy; Electrode; Energy; Sensing; NITROGEN-DOPED GRAPHENE; GAMMA-RAY IRRADIATION; RADIATION-INDUCED REDUCTION; ONE-STEP SYNTHESIS; GRAPHITE OXIDE; POROUS GRAPHENE; PHOTOCATALYTIC REDUCTION; QUANTUM DOTS; HIGH-QUALITY; INTERCALATION-EXFOLIATION;
D O I
10.1016/j.mser.2024.100860
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Over the past ten years, there has been a significant advance in the use of light-based photonic energy to synthesize and modify carbon materials for a variety of applications. Graphene-based materials, formed from different carbon sources, possess distinctive structures, exceptional electrical conductivity, mechanical strength, and lightweight features. These characteristics have attracted growing attention from researchers working on electrodes for energy and sensing devices fabricated by direct illumination of carbon-rich materials with electromagnetic (EM) radiation. In this context, we present an overview of the most recent advancements in the use of light for synthesis, modification and doping of novel carbon-based materials. We discuss a broad range of photon-induced irradiation techniques, including microwave (MW), infrared (IR), visible/sunlight, ultraviolet (UV), X-ray, gamma-ray. These techniques have been applied to enhance the mechanical, electrical, and thermal properties of carbon and carbon-based composite electrodes. Furthermore, this text emphasizes the latest results on the application of these electrodes made from EM photon-based graphene in the fields of energy and sensing research, with the goal of showcasing the current advancements in this rapidly developing area. Finally, we also discuss the present constraints and potential future advancements of EM-based photo induced graphene production and its applications. In the near future, as a result of the ongoing advances in materials and processing technologies, graphene-based composite electrodes are expected to play a significant role in various important fields.
引用
收藏
页数:37
相关论文
共 44 条
  • [1] Graphene and Graphene-Based Materials for Energy Storage Applications
    Zhu, Jixin
    Yang, Dan
    Yin, Zongyou
    Yan, Qingyu
    Zhang, Hua
    SMALL, 2014, 10 (17) : 3480 - 3498
  • [2] Graphene-based hybrid materials and their applications in energy storage and conversion
    Zhou Ding
    Cui Yi
    Han BaoHang
    CHINESE SCIENCE BULLETIN, 2012, 57 (23): : 2983 - 2994
  • [3] Synthesis of Three-Dimensional Graphene-Based Materials for Applications in Energy Storage
    Ma, Yalin
    Chen, Jun
    Hu, Yixuan
    Zhang, Yumeng
    Zhang, Zhongtang
    Zhan, Jing
    Chen, Ailiang
    Peng, Qian
    JOM, 2020, 72 (06) : 2445 - 2459
  • [4] Unique synthesis of graphene-based materials for clean energy and biological sensing applications
    Xu MingSheng
    Gao Yan
    Yang Xi
    Chen HongZheng
    CHINESE SCIENCE BULLETIN, 2012, 57 (23): : 3000 - 3009
  • [5] 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion
    Shi, Qiurong
    Cha, Younghwan
    Song, Yang
    Lee, Jung-In
    Zhu, Chengzhou
    Li, Xiaoyu
    Song, Min-Kyu
    Du, Dan
    Lin, Yuehe
    NANOSCALE, 2016, 8 (34) : 15414 - 15447
  • [6] A review on exfoliation, characterization, environmental and energy applications of graphene and graphene-based composites
    Yusuf, Mohammed
    Kumar, Mahendra
    Khan, Moonis Ali
    Sillanpaa, Mika
    Arafat, Hassan
    ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2019, 273
  • [7] Progress in the electrochemical modification of graphene-based materials and their applications
    Chakrabarti, M. H.
    Low, C. T. J.
    Brandon, N. P.
    Yufit, V.
    Hashim, M. A.
    Irfan, M. F.
    Akhtar, J.
    Ruiz-Trejo, E.
    Hussain, M. A.
    ELECTROCHIMICA ACTA, 2013, 107 : 425 - 440
  • [8] Graphene-based materials for energy applications
    Liu, Jun
    Xue, Yuhua
    Zhang, Mei
    Dai, Liming
    MRS BULLETIN, 2012, 37 (12) : 1265 - 1272
  • [9] A review of three-dimensional graphene-based materials: Synthesis and applications to energy conversion/storage and environment
    Wu, Yingpeng
    Zhu, Jianhua
    Huang, Lu
    CARBON, 2019, 143 : 610 - 640
  • [10] Conductive Polymer/Graphene-based Composites for Next Generation Energy Storage and Sensing Applications
    Moyseowicz, Adam
    Minta, Daria
    Gryglewicz, Grazyna
    CHEMELECTROCHEM, 2023, 10 (09):