MSDG: Multi-Scale Dynamic Graph Neural Network for Industrial Time Series Anomaly Detection

被引:0
|
作者
Zhao, Zhilei [1 ]
Xiao, Zhao [2 ]
Tao, Jie [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Mech Engn, Xiangtan 411201, Peoples R China
关键词
multi-scale sliding window mechanism; graph neural network; long short-term memory; multivariate sensor monitoring data; industrial equipment; spatial-temporal correlations; anomaly detection;
D O I
10.3390/s24227218
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A large number of sensors are typically installed in industrial plants to collect real-time operational data. These sensors monitor data with time series correlation and spatial correlation over time. In previous studies, GNN has built many successful models to deal with time series data, but most of these models have fixed perspectives and struggle to capture the dynamic correlations in time and space simultaneously. Therefore, this paper constructs a multi-scale dynamic graph neural network (MSDG) for anomaly detection in industrial sensor data. First, a multi-scale sliding window mechanism is proposed to input different scale sensor data into the corresponding network. Then, a dynamic graph neural network is constructed to capture the spatial-temporal dependencies of multivariate sensor data. Finally, the model comprehensively considers the extracted features for sequence reconstruction and utilizes the reconstruction errors for anomaly detection. Experiments have been conducted on three real public datasets, and the results show that the proposed method outperforms the mainstream methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Multi-scale graph neural network for global stereo matching
    Wang, Xiaofeng
    Yu, Jun
    Sun, Zhiheng
    Sun, Jiameng
    Su, Yingying
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 118
  • [32] Multi-scale Siamese prediction network for video anomaly detection
    Jingxian Yang
    Yiheng Cai
    Dan Liu
    Jin Xie
    Signal, Image and Video Processing, 2023, 17 : 671 - 678
  • [33] Multi-scale Siamese prediction network for video anomaly detection
    Yang, Jingxian
    Cai, Yiheng
    Liu, Dan
    Xie, Jin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (03) : 671 - 678
  • [34] Edge conditional node update graph neural network for multivariate time series anomaly detection
    Jo, Hayoung
    Lee, Seong-Whan
    INFORMATION SCIENCES, 2024, 679
  • [35] A multi-scale anomaly detection framework for retinal OCT images based on the Bayesian neural network
    Mou, Lintao
    Liang, Lingling
    Gao, Zhanheng
    Wang, Xin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [36] Multi-Scale Dynamic Convolutional Network for Knowledge Graph Embedding
    Zhang, Zhaoli
    Li, Zhifei
    Liu, Hai
    Xiong, Neal N.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2335 - 2347
  • [37] Anomaly Detection on Time-series Logs for Industrial Network
    Chen, Lin
    Kuang, Xiaoyun
    Xu, Aidong
    Suo, Siliang
    Yang, Yiwei
    2020 3RD INTERNATIONAL CONFERENCE ON SMART BLOCKCHAIN (SMARTBLOCK), 2020, : 81 - 86
  • [38] Multi-scale Lightweight Neural Network for Real-Time Object Detection
    Li, Yuan
    Wu, Qiaojun
    Chen, Song
    Kang, Yi
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 199 - 211
  • [39] Multi-Scale Event Detection in Financial Time Series
    de Salles, Diego Silva
    Gea, Cristiane
    Mello, Carlos E.
    Assis, Laura
    Coutinho, Rafaelli
    Bezerra, Eduardo
    Ogasawara, Eduardo
    COMPUTATIONAL ECONOMICS, 2025, 65 (01) : 211 - 239
  • [40] Multi-scale Anomaly Detection with Wavelets
    Coughlin, Jack
    Perrone, Gian
    INTERNATIONAL CONFERENCE ON BIG DATA AND INTERNET OF THINGS (BDIOT 2017), 2017, : 102 - 108