A compliant mechanism actuated bistable hybrid mode triboelectric nanogenerator

被引:1
作者
Li, Zifan [1 ]
Ee, Zhiyin [2 ]
Pickett, William [1 ]
Patel, Bhumik [1 ]
Gan, Wee Chen [2 ]
Tang, Lihua [1 ]
Su, Yufeng [3 ]
Xia, Cuipeng [1 ]
Yin, Peilun [1 ]
Aw, Kean Chin [1 ]
机构
[1] Univ Auckland, Dept Mech & Mechatron Engn, Auckland, New Zealand
[2] Xiamen Univ Malaysia, New Energy Sci & Engn, Sepang, Selangor, Malaysia
[3] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou, Peoples R China
关键词
triboelectric nanogenerator; compliant mechanism; bistable structure; energy harvester; hybrid mode;
D O I
10.1088/1361-665X/ad8c05
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Traditional contact-separation mode triboelectric nanogenerators (CS-TENGs) and lateral sliding mode TENGs exhibit distinct strengths and weaknesses in terms of their charge generation capability and durability. In this study, by leveraging a bistable compliant mechanism (BHM-TENG), we propose a hybrid mode TENG, which synthesizes the features of two traditional working modes to achieve both high durability and satisfactory performance. The proposed design exhibited a 78.6% surge in voltage output and a 142% surge in power density compared to CS-TENG. The design also maintains over 95% power generation capability after 100 000 cycles. Moreover, the compliant bistable mechanism offers a reliable actuation method at low frequencies, validated through experiments supported with a mathematical model. Real-world energy harvesting applications enabled by BHM-TENG are also discussed.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Generalized constitutive equations for piezo-actuated compliant mechanism [J].
Cao, Junyi ;
Ling, Mingxiang ;
Inman, Daniel J. ;
Lin, Jin .
SMART MATERIALS AND STRUCTURES, 2016, 25 (09)
[32]   Influence of Laser Texturing on Contact-Separation and Sliding-Mode Triboelectric Nanogenerator for Vibration Sensing [J].
Jaurker, Diksha ;
Joshi, Suhas S. ;
Palani, I. A. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
[33]   Study on friction-electrification coupling in sliding-mode triboelectric nanogenerator [J].
Zhang, Weiqiang ;
Diao, Dongfeng ;
Sun, Kun ;
Fan, Xue ;
Wang, Pengfei .
NANO ENERGY, 2018, 48 :456-463
[34]   Upper limits for output performance of contact-mode triboelectric nanogenerator systems [J].
Yang, Bao ;
Tao, Xiao-ming ;
Peng, Ze-hua .
NANO ENERGY, 2019, 57 :66-73
[35]   Hybrid dual-mode high-output triboelectric nanogenerator for achieving alternating current/direct current collaborative output [J].
Gao, Sihang ;
Wei, Hao ;
Wang, Rui ;
Luo, Xiaoting ;
Liu, Yongxi ;
Huang, Cong ;
Lei, Yuqing ;
Deng, Xiaoxin .
NANO ENERGY, 2024, 129
[36]   Ag-Cellulose Hybrid Filler for Boosting the Power Output of a Triboelectric Nanogenerator [J].
Chenkhunthod, Supakit ;
Yamklang, Wimonsiri ;
Kaeochana, Walailak ;
Prada, Teerayut ;
Bunriw, Weeraya ;
Harnchana, Viyada .
POLYMERS, 2023, 15 (05)
[37]   Triboelectric-Thermoelectric Hybrid Nanogenerator for Harvesting Energy from Ambient Environments [J].
Wu, Ying ;
Kuang, Shuangyang ;
Li, Huayang ;
Wang, Hailu ;
Yang, Rusen ;
Zhai, Yuan ;
Zhu, Guang ;
Wang, Zhong Lin .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (11)
[38]   Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting [J].
Zhao, Chunlin ;
Zhang, Qian ;
Zhang, Wenliang ;
Du, Xinyu ;
Zhang, Yang ;
Gong, Shaobo ;
Ren, Kailiang ;
Sun, Qijun ;
Wang, Zhong Lin .
NANO ENERGY, 2019, 57 :440-449
[39]   Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics [J].
Zhang, Qian ;
Zhang, Zheng ;
Liang, Qijie ;
Gao, Fangfang ;
Yi, Fang ;
Ma, Mingyuan ;
Liao, Qingliang ;
Kang, Zhuo ;
Zhang, Yue .
NANO ENERGY, 2019, 55 :151-163
[40]   Design and investigation of a torsional disc-triboelectric nanogenerator with magnetic tristable mechanism [J].
Tan, Dongguo ;
Ou, Xu ;
Zhou, Jiaxi ;
Wang, Kai ;
Peng, Jian ;
Yan, Shijun ;
Wang, Qiang ;
Sun, Hongxin .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 229