A compliant mechanism actuated bistable hybrid mode triboelectric nanogenerator

被引:1
作者
Li, Zifan [1 ]
Ee, Zhiyin [2 ]
Pickett, William [1 ]
Patel, Bhumik [1 ]
Gan, Wee Chen [2 ]
Tang, Lihua [1 ]
Su, Yufeng [3 ]
Xia, Cuipeng [1 ]
Yin, Peilun [1 ]
Aw, Kean Chin [1 ]
机构
[1] Univ Auckland, Dept Mech & Mechatron Engn, Auckland, New Zealand
[2] Xiamen Univ Malaysia, New Energy Sci & Engn, Sepang, Selangor, Malaysia
[3] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou, Peoples R China
关键词
triboelectric nanogenerator; compliant mechanism; bistable structure; energy harvester; hybrid mode;
D O I
10.1088/1361-665X/ad8c05
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Traditional contact-separation mode triboelectric nanogenerators (CS-TENGs) and lateral sliding mode TENGs exhibit distinct strengths and weaknesses in terms of their charge generation capability and durability. In this study, by leveraging a bistable compliant mechanism (BHM-TENG), we propose a hybrid mode TENG, which synthesizes the features of two traditional working modes to achieve both high durability and satisfactory performance. The proposed design exhibited a 78.6% surge in voltage output and a 142% surge in power density compared to CS-TENG. The design also maintains over 95% power generation capability after 100 000 cycles. Moreover, the compliant bistable mechanism offers a reliable actuation method at low frequencies, validated through experiments supported with a mathematical model. Real-world energy harvesting applications enabled by BHM-TENG are also discussed.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Friction force excitation effect on the sliding-mode triboelectric nanogenerator [J].
Zhang, Weiqiang ;
Bao, Weimin ;
Lu, Xiaozhou ;
Diao, Dongfeng .
TRIBOLOGY INTERNATIONAL, 2023, 185
[22]   A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring [J].
Wu, Yuxiang ;
Li, Yusheng ;
Zou, Yang ;
Rao, Wei ;
Gai, Yansong ;
Xue, Jiangtao ;
Wu, Li ;
Qu, Xuecheng ;
Liu, Ying ;
Xu, Guodong ;
Xu, Lingling ;
Liu, Zhuo ;
Li, Zhou .
NANO ENERGY, 2022, 92
[23]   Hybrid energy cells based on triboelectric nanogenerator: From principle to system [J].
Chen, Xuexian ;
Ren, Zhongyang ;
Han, Mengdi ;
Wan, Ji ;
Zhang, Haixia .
NANO ENERGY, 2020, 75
[24]   A Spherical Hybrid Triboelectric Nanogenerator for Enhanced Water Wave Energy Harvesting [J].
Lee, Kwangseok ;
Lee, Jeong-won ;
Kim, Kihwan ;
Yoo, Donghyeon ;
Kim, Dong Sung ;
Hwang, Woonbong ;
Song, Insang ;
Sim, Jae-Yoon .
MICROMACHINES, 2018, 9 (11)
[25]   Metal nanowire-polymer matrix hybrid layer for triboelectric nanogenerator [J].
Kang, Hyungseok ;
Kim, Hyoung Taek ;
Woo, Hwi Je ;
Kim, Han ;
Kim, Do Hwan ;
Lee, Sungjoo ;
Kim, SeongMin ;
Song, Young Jae ;
Kim, Sang-Woo ;
Cho, Jeong Ho .
NANO ENERGY, 2019, 58 (227-233) :227-233
[26]   Robust triboelectric-electromagnetic hybrid nanogenerator with maglev-enabled automatic mode transition for exploiting breeze energy [J].
Fan, Kangqi ;
Chen, Chenggen ;
Zhang, Baosen ;
Li, Xiang ;
Wang, Zhen ;
Cheng, Tinghai ;
Wang, Zhong Lin .
APPLIED ENERGY, 2022, 328
[27]   Bow-type bistable triboelectric nanogenerator for harvesting energy from low-frequency vibration [J].
Tan, Dongguo ;
Zhou, Jiaxi ;
Wang, Kai ;
Zhao, Xuhui ;
Wang, Qiang ;
Xu, Daolin .
NANO ENERGY, 2022, 92
[28]   High-performance triboelectric nanogenerator with synchronization mechanism by charge handling [J].
Yu, Xin ;
Ge, Jianwei ;
Wang, Zhenjie ;
Wang, Jianlong ;
Zhao, Da ;
Wang, Zhong Lin ;
Cheng, Tinghai .
ENERGY CONVERSION AND MANAGEMENT, 2022, 263
[29]   Tapping-Actuated Triboelectric Nanogenerator with Surface Charge Density Optimization for Human Motion Energy Harvesting [J].
Duque, Marcos ;
Murillo, Gonzalo .
NANOMATERIALS, 2022, 12 (19)
[30]   Kinetostatic Modeling of Redundantly Actuated Planar Compliant Parallel Mechanism [J].
Yang, Miao ;
Zhang, Chi ;
Yu, Hongtao ;
Huang, Xiaolu ;
Yang, Guilin ;
Fang, Zaojun .
INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 :358-369