Temporal Protein Complex Identification Based on Dynamic Heterogeneous Protein Information Network Representation Learning

被引:0
作者
Li, Zeqian [1 ]
Zhang, Yijia [1 ]
Zhou, Peixuan [1 ]
机构
[1] Dalian Maritime Univ, Sch Informat Sci & Technol, Dalian 116026, Peoples R China
关键词
Protein complex identification; dynamic heterogeneous network; network representation learning; contrastive learning; DISCOVERY; FRAMEWORK; DATABASE;
D O I
10.1109/TCBB.2024.3351078
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Protein complexes, as the fundamental units of cellular function and regulation, play a crucial role in understanding the normal physiological functions of cells. Existing methods for protein complex identification attempt to introduce other biological information on top of the protein-protein interaction (PPI) network to assist in evaluating the degree of association between proteins. However, these methods usually treat protein interaction networks as flat homogeneous static networks. They cannot distinguish the roles and importance of different types of biological information, nor can they reflect the dynamic changes of protein complexes. In recent years, heterogeneous network representation learning has achieved great success in processing complex heterogeneous information and mining deep semantics. We thus propose a temporal protein complex identification method based on Dynamic Heterogeneous Protein information network Representation Learning, DHPRL. DHPRL naturally integrates multiple types of heterogeneous biological information in the cellular temporal dimension. It simultaneously models the temporal dynamic properties of proteins and the heterogeneity of biological information to improve the understanding of protein interactions and the accuracy of complex prediction. Firstly, we construct Dynamic Heterogeneous Protein Information Network (DHPIN) by integrating temporal gene expression information and GO attribute information. Then we design a dual-view collaborative contrast mechanism. Specifically, proposing to learn protein representations from two views of DHPIN (1-hop relation view and meta-path view) to model the consistency and specificity between nearest-neighbour bio information and deeper biological semantics. The dynamic PPI network is thereafter re-weighted based on the learned protein representations. Finally, we perform protein identification on the re-weighted dynamic PPI network. Extensive experimental results demonstrate that DHPRL can effectively model complicated biological information and achieve state-of-the-art performance in most cases.
引用
收藏
页码:1154 / 1164
页数:11
相关论文
共 46 条
[1]   Structure-based assembly of protein complexes in yeast [J].
Aloy, P ;
Böttcher, B ;
Ceulemans, H ;
Leutwein, C ;
Mellwig, C ;
Fischer, S ;
Gavin, AC ;
Bork, P ;
Superti-Furga, G ;
Serrano, L ;
Russell, RB .
SCIENCE, 2004, 303 (5666) :2026-2029
[2]   An ensemble framework for clustering protein-protein interaction networks [J].
Asur, Sitaram ;
Ucar, Duygu ;
Parthasarathy, Srinivasan .
BIOINFORMATICS, 2007, 23 (13) :I29-I40
[3]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[4]   Identifying novel protein interactions: Proteomic methods, optimisation approaches and data analysis pipelines [J].
Carneiro, Daniel Goncalves ;
Clarke, Thomas ;
Davies, Clare C. ;
Bailey, Dalan .
METHODS, 2016, 95 :46-54
[5]   A hub-attachment based method to detect functional modules from confidence-scored protein interactions and expression profiles [J].
Chin, Chia-Hao ;
Chen, Shu-Hwa ;
Ho, Chin-Wen ;
Ko, Ming-Tat ;
Lin, Chung-Yen .
BMC BIOINFORMATICS, 2010, 11
[6]   Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms [J].
Christie, KR ;
Weng, S ;
Balakrishnan, R ;
Costanzo, MC ;
Dolinski, K ;
Dwight, SS ;
Engel, SR ;
Feierbach, B ;
Fisk, DG ;
Hirschman, JE ;
Hong, EL ;
Issel-Tarver, L ;
Nash, R ;
Sethuraman, A ;
Starr, B ;
Theesfeld, CL ;
Andrada, R ;
Binkley, G ;
Dong, Q ;
Lane, C ;
Schroeder, M ;
Botstein, D ;
Cherry, JM .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D311-D314
[7]   Dynamic Proteomics of Individual Cancer Cells in Response to a Drug [J].
Cohen, A. A. ;
Geva-Zatorsky, N. ;
Eden, E. ;
Frenkel-Morgenstern, M. ;
Issaeva, I. ;
Sigal, A. ;
Milo, R. ;
Cohen-Saidon, C. ;
Liron, Y. ;
Kam, Z. ;
Cohen, L. ;
Danon, T. ;
Perzov, N. ;
Alon, U. .
SCIENCE, 2008, 322 (5907) :1511-1516
[8]   Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae [J].
Collins, Sean R. ;
Kemmeren, Patrick ;
Zhao, Xue-Chu ;
Greenblatt, Jack F. ;
Spencer, Forrest ;
Holstege, Frank C. P. ;
Weissman, Jonathan S. ;
Krogan, Nevan J. .
MOLECULAR & CELLULAR PROTEOMICS, 2007, 6 (03) :439-450
[9]   Proteome survey reveals modularity of the yeast cell machinery [J].
Gavin, AC ;
Aloy, P ;
Grandi, P ;
Krause, R ;
Boesche, M ;
Marzioch, M ;
Rau, C ;
Jensen, LJ ;
Bastuck, S ;
Dümpelfeld, B ;
Edelmann, A ;
Heurtier, MA ;
Hoffman, V ;
Hoefert, C ;
Klein, K ;
Hudak, M ;
Michon, AM ;
Schelder, M ;
Schirle, M ;
Remor, M ;
Rudi, T ;
Hooper, S ;
Bauer, A ;
Bouwmeester, T ;
Casari, G ;
Drewes, G ;
Neubauer, G ;
Rick, JM ;
Kuster, B ;
Bork, P ;
Russell, RB ;
Superti-Furga, G .
NATURE, 2006, 440 (7084) :631-636
[10]   Functional organization of the yeast proteome by systematic analysis of protein complexes [J].
Gavin, AC ;
Bösche, M ;
Krause, R ;
Grandi, P ;
Marzioch, M ;
Bauer, A ;
Schultz, J ;
Rick, JM ;
Michon, AM ;
Cruciat, CM ;
Remor, M ;
Höfert, C ;
Schelder, M ;
Brajenovic, M ;
Ruffner, H ;
Merino, A ;
Klein, K ;
Hudak, M ;
Dickson, D ;
Rudi, T ;
Gnau, V ;
Bauch, A ;
Bastuck, S ;
Huhse, B ;
Leutwein, C ;
Heurtier, MA ;
Copley, RR ;
Edelmann, A ;
Querfurth, E ;
Rybin, V ;
Drewes, G ;
Raida, M ;
Bouwmeester, T ;
Bork, P ;
Seraphin, B ;
Kuster, B ;
Neubauer, G ;
Superti-Furga, G .
NATURE, 2002, 415 (6868) :141-147