Implementing Practical Byzantine Fault Tolerance Over Cellular Networks

被引:0
作者
Zhou, Ziyi [1 ]
Onireti, Oluwakayode [1 ]
Lin, Xinyi [1 ]
Zhang, Lei [1 ]
Imran, Muhammad Ali [1 ]
机构
[1] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
来源
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY | 2024年 / 5卷
关键词
Blockchain; PBFT; cellular network; distributed ledger technology; Internet of Things; wireless communications; BLOCKCHAIN NETWORKS; CHALLENGES; CONSENSUS; PBFT;
D O I
10.1109/OJCOMS.2024.3477930
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Blockchain has shown significant potential as a key enabler in privacy and security in the forthcoming 6G wireless network, due to its distributed and decentralized characteristics. Practical Byzantine fault tolerance (PBFT) emerges as a prominent technology for deployment in wireless networks due to its attributes of low latency, high throughput, and minimal computational requirements. However, the high complexity of communication is the bottleneck of PBFT for achieving high scalability. To tackle this problem, this paper proposes a novel framework of PBFT, where the inter-node communication during the normal case operation is completed through base stations. The uplink and downlink communication between the base station and nodes are modelled based on the signal-to-interference-plus-noise ratio (SINR) threshold. A novel 'timeout' mechanism is incorporated to reduce the communication complexity. The performance is evaluated by metrics including consensus success probability, communication complexity, view change delay, view change occurrence probability, consensus delay, consensus throughput and energy consumption. The numerical results show that the proposed scheme achieves higher consensus success probability and throughput, lower communication complexity and consensus delay compared to the conventional PBFT. The results of view change delay and view change occurrence probability and the optimal configuration provide analytical guidance for the deployment of wireless PBFT networks.
引用
收藏
页码:6546 / 6560
页数:15
相关论文
共 46 条
  • [1] A Tractable Approach to Coverage and Rate in Cellular Networks
    Andrews, Jeffrey G.
    Baccelli, Francois
    Ganti, Radha Krishna
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (11) : 3122 - 3134
  • [2] [Anonymous], 2013, Computer networking: a top-down approach
  • [3] Bertsekas D., 2021, Data Networks
  • [4] Bertsekas D., 2008, Introduction to Probability, V1
  • [5] Next-Generation Internet of Things (IoT): Opportunities, Challenges, and Solutions
    Bin Zikria, Yousaf
    Ali, Rashid
    Afzal, Muhammad Khalil
    Kim, Sung Won
    [J]. SENSORS, 2021, 21 (04) : 1 - 7
  • [6] Practical byzantine fault tolerance and proactive recovery
    Castro, M
    Liskov, B
    [J]. ACM TRANSACTIONS ON COMPUTER SYSTEMS, 2002, 20 (04): : 398 - 461
  • [7] Chase M, 2009, CCS'09: PROCEEDINGS OF THE 16TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P121
  • [8] Chiu S.N., 2013, Stochastic geometry and its applications
  • [9] 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions
    Chowdhury, Mostafa Zaman
    Shahjalal, Md
    Ahmed, Shakil
    Jang, Yeong Min
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 : 957 - 975
  • [10] Feller William, 1971, An Introduction to Probability Theory and Its Applications, V2