A Hybrid Optimization Approach for 3D Multi-Camera Human Pose Estimation

被引:0
|
作者
Eguchi, Masatoshi [1 ]
Obo, Takenori [1 ]
Kubota, Naoyuki [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Syst Design, Dept Mech Syst Engn, 6-6 Asahigaoka, Tokyo 1910065, Japan
关键词
particle swarm optimization; steepest descent method; motion capture;
D O I
10.20965/jaciii.2024.p1344
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a method for estimating 3D human joint angles using a hybrid optimization approach that integrates particle swarm optimization (PSO) with the steepest descent method for enhanced accuracy in both global and local searches. While advancements in motion capture technologies have made it easier to obtain 2D human joint position data, the accurate estimation of 3D joint angles remains crucial for detailed behavior analysis. Our proposed method first applies PSO to optimize the initial estimation of 3D joint angles from 2D joint positions. We further refine the estimation using the steepest descent method, improving the local search process. The convergence and accuracy of the algorithm are influenced by the grouping strategy in PSO, which is discussed in detail. Experimental results validate the effectiveness of our approach in enhancing the accuracy of 3D human pose estimation.
引用
收藏
页码:1344 / 1353
页数:10
相关论文
共 50 条
  • [1] Joint Camera Pose Estimation and 3D Human Pose Estimation in a Multi-camera Setup
    Puwein, Jens
    Ballan, Luca
    Ziegler, Remo
    Pollefeys, Marc
    COMPUTER VISION - ACCV 2014, PT II, 2015, 9004 : 473 - 487
  • [2] 3D pose estimation for robotic applications based on a multi-camera hybrid visual system
    Lippiello, Vincenzo
    Siciliano, Bruno
    Villani, Luigi
    2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 2732 - +
  • [3] Evaluation of RGB-D Multi-Camera Pose Estimation for 3D Reconstruction
    de Medeiros Esper, Ian
    Smolkin, Oleh
    Manko, Maksym
    Popov, Anton
    From, Pal Johan
    Mason, Alex
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [4] Real-time multi-camera 3D human pose estimation at the edge for industrial applications
    Boldo, Michele
    De Marchi, Mirco
    Martini, Enrico
    Aldegheri, Stefano
    Quaglia, Davide
    Fummi, Franco
    Bombieri, Nicola
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [5] Mirage: an O(n) time analytical solution to 3D camera pose estimation with multi-camera support
    Dinc, Semih
    Fahimi, Farbod
    Aygun, Ramazan
    ROBOTICA, 2017, 35 (12) : 2278 - 2296
  • [6] Multi-camera head pose estimation
    Munoz-Salinas, Rafael
    Yeguas-Bolivar, E.
    Saffiotti, A.
    Medina-Carnicer, R.
    MACHINE VISION AND APPLICATIONS, 2012, 23 (03) : 479 - 490
  • [7] Multi-camera head pose estimation
    Rafael Muñoz-Salinas
    E. Yeguas-Bolivar
    A. Saffiotti
    R. Medina-Carnicer
    Machine Vision and Applications, 2012, 23 : 479 - 490
  • [8] Pose Estimation for Multi-camera Systems
    Zhao, Chunhui
    Fan, Bin
    Hu, Jinwen
    Tian, Limin
    Zhang, Zhiyuan
    Li, Sijia
    Pan, Quan
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2017, : 533 - 538
  • [9] Pose estimation for multi-camera systems
    Frahm, JM
    Köser, K
    Koch, R
    PATTERN RECOGNITION, 2004, 3175 : 286 - 293
  • [10] E3Pose: Energy-Efficient Edge-assisted Multi-camera System for Multi-human 3D Pose Estimation
    Zhang, Letian
    Xu, Jie
    PROCEEDINGS 8TH ACM/IEEE CONFERENCE ON INTERNET OF THINGS DESIGN AND IMPLEMENTATION, IOTDI 2023, 2023, : 52 - 65