Diode-pumped high-power gigahertz Kerr-lens mode-locked solid-state oscillator enabled by a dual-confocal ring cavity

被引:2
作者
Zheng, Li [1 ,2 ]
Tian, Wenlong [1 ]
Xue, Hanchen [3 ,4 ]
Chen, Yuehang [1 ]
Wang, Geyang [1 ]
Bai, Chuan [1 ]
Yu, Yang [5 ]
Wei, Zhiyi [3 ,4 ]
Zhu, Jiangfeng [1 ]
机构
[1] Xidian Univ, Sch Optoelect Engn, Xian 710071, Peoples R China
[2] Shaanxi Univ Technol, Sch Phys & Telecommun Engn, Hanzhong, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing, Peoples R China
[5] Xidian Univ, Acad Adv Interdisciplinary Res, Xian, Peoples R China
来源
HIGH POWER LASER SCIENCE AND ENGINEERING | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
diode pump; GHz repetition rate; high power; Kerr-lens mode locking; solid-state laser; LASER;
D O I
10.1017/hpl.2024.42
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Femtosecond oscillators with gigahertz (GHz) repetition rate are appealing sources for spectroscopic applications benefiting from the individually accessible and high-power comb line. The mode mismatch between the potent pump laser diode (LD) and the incredibly small laser cavity, however, limits the average output power of existing GHz Kerr-lens mode-locked (KLM) oscillators to tens of milliwatts. Here, we present a novel method that solves the difficulty and permits high average power LD-pumped KLM oscillators at GHz repetition rate. We propose a numerical simulation method to guide the realization of Kerr-lens mode-locking and comprehend the dynamics of the Kerr-lens mode-locking process. As a proof-of-principle demonstration, an LD-pumped Yb:KGW oscillator with up to 6.17-W average power and 184-fs pulse duration at 1.6-GHz repetition rate is conducted. The simulation had a good agreement with the experimental results. The cost-effective, compact and powerful laser source opens up new possibilities for research and industrial applications.
引用
收藏
页数:9
相关论文
共 27 条
[1]   High-power low-noise 2-GHz femtosecond laser oscillator at 2.4 μm [J].
Barh, Ajanta ;
Alaydin, B. Ozgur ;
Heidrich, Jonas ;
Gaulke, Marco ;
Golling, Matthias ;
Phillips, Christopher R. ;
Keller, Ursula .
OPTICS EXPRESS, 2022, 30 (04) :5019-5025
[2]   Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling [J].
Bartels, A. ;
Cerna, R. ;
Kistner, C. ;
Thoma, A. ;
Hudert, F. ;
Janke, C. ;
Dekorsy, T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (03)
[3]   10-GHz Self-Referenced Optical Frequency Comb [J].
Bartels, Albrecht ;
Heinecke, Dirk ;
Diddams, Scott A. .
SCIENCE, 2009, 326 (5953) :681-681
[4]  
Coddington I, 2016, OPTICA, V3, P414, DOI [10.1364/optica.3.000414, 10.1364/OPTICA.3.000414]
[5]   Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb [J].
Diddams, Scott A. ;
Hollberg, Leo ;
Mbele, Vela .
NATURE, 2007, 445 (7128) :627-630
[6]   Critical power for self-focusing in bulk media and in hollow waveguides [J].
Fibich, G ;
Gaeta, AL .
OPTICS LETTERS, 2000, 25 (05) :335-337
[7]   Dual-comb thin-disk oscillator [J].
Fritsch, Kilian ;
Hofer, Tobias ;
Brons, Jonathan ;
Iandulskii, Maksim ;
Mak, Ka Fai ;
Chen, Zaijun ;
Picque, Nathalie ;
Pronin, Oleg .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Efficient high-power sub-50-fs gigahertz repetition rate diode-pumped solid-state laser [J].
Hamrouni, Marin ;
Labaye, Francois ;
Modsching, Norbert ;
Wittwer, Valentin J. ;
Sudmeyer, Thomas .
OPTICS EXPRESS, 2022, 30 (17) :30012-30019
[9]   Broadband 1-GHz mid-infrared frequency comb [J].
Hoghooghi, Nazanin ;
Xing, Sida ;
Chang, Peter ;
Lesko, Daniel ;
Lind, Alexander ;
Rieker, Greg ;
Diddams, Scott .
LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
[10]   Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy [J].
Ideguchi, Takuro ;
Nakamura, Tasuku ;
Kobayashi, Yohei ;
Goda, Keisuke .
OPTICA, 2016, 3 (07) :748-753