Reliable Source-Free Domain Adaptation for Cross-User Myoelectric Pattern Recognition

被引:0
|
作者
Zhang, Xuan [1 ]
Wu, Le [1 ]
Zhang, Xu [2 ]
Chen, Xiang [2 ]
Li, Chang [3 ]
Chen, Xun [1 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Sch Microelect, Hefei 230027, Peoples R China
[3] Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Cross-subject; electromyography; EMG control; source-free domain adaptation (SFDA); transfer learning; UPPER-LIMB PROSTHESES; SIGNALS; FRAMEWORK; SCHEME;
D O I
10.1109/JSEN.2024.3475818
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Surface electromyographic (sEMG) signals are widely used for human-machine interaction (HMI) control, providing information about user movement intent. However, interindividual differences in muscle anatomy pose a challenge for cross-user myoelectric pattern recognition (MPR) algorithms. Existing cross-user MPR algorithms rely on domain adaptation (DA) using data from source and target users for model updating. However, using historical user data in commercial HMI devices risks disclosing user health information and biometric privacy. Therefore, enabling MPR algorithms to update models quickly and solely based on target user data in a source-free manner is crucial. With this aim, this article proposes a reliable source-free DA (RSFDA) framework that enables rapid cross-user application of myoelectric algorithms. Specifically, the proposed FSFDA framework employs a teacher-student framework. Both the teacher and student models are initialized with the source model. During the update of model parameters, the teacher framework utilizes historical network parameters to prevent knowledge forgetting, while the student model continuously updates parameters while ensuring consistency with the teacher model output. As a result, the final student model demonstrates increased stability and reliability in classifying gestures from new users. The experimental results demonstrate that the proposed RSFDA approach achieves a recognition accuracy of 94.44% +/- 5.68%, which outperforms the state-of-the-art methods on a high-density sEMG dataset using only five samples per gesture. Furthermore, this framework is effective even when only one sample is provided or when gesture categories are missing. This study provides a faster and safer strategy for cross-user MPR, enabling multiuser control.
引用
收藏
页码:39363 / 39372
页数:10
相关论文
共 50 条
  • [1] Domain Adaptation With Self-Guided Adaptive Sampling Strategy: Feature Alignment for Cross-User Myoelectric Pattern Recognition
    Zhang, Xuan
    Zhang, Xu
    Wu, Le
    Li, Chang
    Chen, Xiang
    Chen, Xun
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 1374 - 1383
  • [2] Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition
    Zhang, Xuan
    Wu, Le
    Zhang, Xu
    Chen, Xiang
    Li, Chang
    Chen, Xun
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [3] Cross-User Activity Recognition Using Deep Domain Adaptation With Temporal Dependency Information
    Ye, Xiaozhou
    Wang, Kevin I-Kai
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [4] Source-free domain adaptation with unrestricted source hypothesis
    He, Jiujun
    Wu, Liang
    Tao, Chaofan
    Lv, Fengmao
    PATTERN RECOGNITION, 2024, 149
  • [5] A Comprehensive Survey on Source-Free Domain Adaptation
    Li, Jingjing
    Yu, Zhiqi
    Du, Zhekai
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (08) : 5743 - 5762
  • [6] Unleashing Knowledge Potential of Source Hypothesis for Source-Free Domain Adaptation
    Hu, Bingyu
    Liu, Jiawei
    Zheng, Kecheng
    Zha, Zheng-Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5422 - 5434
  • [7] Source-Free Open Compound Domain Adaptation in Semantic Segmentation
    Zhao, Yuyang
    Zhong, Zhun
    Luo, Zhiming
    Lee, Gim Hee
    Sebe, Nicu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 7019 - 7032
  • [8] Adaptive pseudo-label threshold for source-free domain adaptation
    Mingwen Shao
    Sijie Chen
    Fan Wang
    Lixu Zhang
    Neural Computing and Applications, 2025, 37 (4) : 1875 - 1887
  • [9] Visually Source-Free Domain Adaptation via Adversarial Style Matching
    Jing, Mengmeng
    Li, Jingjing
    Lu, Ke
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 1032 - 1044
  • [10] Source-free video domain adaptation by learning from noisy labels
    Dasgupta, Avijit
    Jawahar, C. V.
    Alahari, Karteek
    PATTERN RECOGNITION, 2025, 161