A Comparative Analysis of the Electrical Properties of Silicone Rubber Composites with Graphene and Unwashed Magnetite

被引:0
|
作者
Malaescu, Iosif [1 ,2 ]
Sfirloaga, Paula [3 ]
Bunoiu, Octavian M. [1 ]
Marin, Catalin N. [1 ]
机构
[1] West Univ Timisoara, Phys Fac, Bd V Parvan 4, Timisoara 300223, Romania
[2] West Univ Timisoara ICAM WUT, Inst Adv Environm Res, Oituz Str 4, Timisoara 300086, Romania
[3] Natl Inst Res & Dev Electrochem & Condensed Matter, Dr AP Podeanu 144, Timisoara 300569, Romania
关键词
electrical conductivity; dielectric permittivity; graphene; magnetite; composites; silicone rubber; DIELECTRIC-RELAXATION; MECHANICAL-PROPERTIES; AC CONDUCTIVITY; DISPERSION;
D O I
10.3390/ma17236006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three elastomer samples were prepared using GS530SP01K1 silicone rubber (ProChima). The samples included pure silicone rubber (SR), a silicone rubber-graphene composite (SR-GR), and a silicone rubber-magnetite composite (SR-Fe3O4). The magnetite was synthesized via chemical precipitation but was not washed to remove residual ions. The dielectric response and electrical conductivity of these samples were analyzed across a frequency range of 500 Hz to 2 MHz. The analysis of the complex dielectric permittivity and Cole-Cole plots indicated a mixed dielectric response, combining dipolar behavior and charge carrier hopping. Despite this mixed response, electrical conductivity followed Jonscher's power law, with the exponent values (0.5 < n < 0.9) confirming the dominance of electron hopping over dipolar behavior in SR-GR and SR-Fe3O4 samples. The SR-Fe3O4 sample demonstrated higher dielectric permittivity and electrical conductivity than SR-GR, even though graphene is inherently more conductive than magnetite. This discrepancy is likely due to the presence of residual ions on the magnetite surface from the chemical precipitation process as the magnetite was only decanted and dried without washing. These findings suggest that the ionic residue significantly influences the dielectric and conductive properties of the composite.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Wear-Resistant Graphene-Silicone Rubber Composites
    Zheng, Zhong
    Yang, Heng
    Yao, XueFeng
    TRIBOLOGY TRANSACTIONS, 2020, 63 (02) : 205 - 214
  • [32] The influence of liquid silicone rubber on the properties of polyurethane elastomer/liquid silicone rubber/graphene nanoplatelets stretchable conductive materials
    Heng, Chun Wei
    Teh, Pei Leng
    Rahim, Nur Azura Abdul
    Yeoh, Cheow Keat
    PROGRESS IN RUBBER PLASTICS AND RECYCLING TECHNOLOGY, 2022, 38 (04) : 267 - 279
  • [33] Inhibition Effect of Graphene Nanoplatelets on Electrical Degradation in Silicone Rubber
    Han, Tao
    Du, Boxue
    Su, Jingang
    Gao, Yu
    Xing, Yunqi
    Fang, Shengchen
    Li, Chuanyang
    Lei, Zhipeng
    POLYMERS, 2019, 11 (06)
  • [34] Anisotropic electrical and mechanical properties of the superaligned carbon nanotubes film/silicone composites
    Zhou Z.
    Yan Q.
    Liu C.
    Fan S.
    Liu, Changhong (chliu@mail.tsinghua.edu.cn), 1600, Beijing University of Aeronautics and Astronautics (BUAA) (34): : 1533 - 1539
  • [35] Electrical and mechanical properties of manganese dioxide-magnetite-filled acrylonitrile butadiene rubber blends
    El-Nemr, K. F.
    Balboul, M. R.
    Ali, M. A.
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2016, 29 (05) : 704 - 716
  • [36] Thermal and electrical properties enhancement of a nanocomposite of industrial silicone rubber filled with reduced graphene oxide
    Soriano-Ortiz, J. A.
    Rueda-Morales, G.
    Martinez-Guitierrez, H.
    Rojas-Trigos, J. B.
    Ortega-Cervantez, G.
    Ortiz-Lopez, J.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2022, 30 (02) : 221 - 231
  • [37] Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties
    Valentini, L.
    Bon, S. Bittolo
    Hernandez, M.
    Lopez-Manchado, M. A.
    Pugno, N. M.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 166 : 109 - 114
  • [38] Effects of types of fillers and filler loading on the properties of silicone rubber composites
    Kong, S. M.
    Mariatti, M.
    Busfield, J. J. C.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (13) : 1087 - 1096
  • [39] Preparation and properties of ceramifiable flame-retarded silicone rubber composites
    Lou, Feipeng
    Yan, Wei
    Guo, Weihong
    Wei, Ting
    Li, Qiuying
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2017, 130 (02) : 813 - 821
  • [40] Morphology and Properties of the PA66/PC/Silicone Rubber Composites
    Chen, Jun
    Wu, Wei
    You, Yi
    Fan, Wei
    Chen, Yujie
    JOURNAL OF APPLIED POLYMER SCIENCE, 2010, 117 (05) : 2964 - 2971