Multitask Learning for Estimation of Magnetic Parameters Using Pattern Recognition

被引:0
作者
Sehgal, Anubha [1 ]
Saini, Shipra [1 ]
Nehete, Hemkant [1 ]
Das, Kunal Kranti [1 ]
Roy, Sourajeet [1 ]
Kaushik, Brajesh Kumar [1 ]
机构
[1] Indian Inst Technol Roorkee, Roorkee 247667, Uttarakhand, India
来源
IEEE OPEN JOURNAL OF NANOTECHNOLOGY | 2024年 / 5卷
关键词
Machine learning; pattern recognition; micromagnetic; Dzyaloshinskii Moriya interaction; parameter estimation; exchange stiffness;
D O I
10.1109/OJNANO.2024.3494836
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Machine learning (ML) approaches present an effective technique for accurately and efficiently predicting device parameters. Using these techniques, we introduce a multi-task convolutional neural network (CNN) model and support vector regression (SVR) model that is intended to precisely estimate two important parameters of magnetic systems such as the Dzyaloshinskii-Moriya interaction (DMI) constant and the exchange constant (A(ex)). The magnetic Hamiltonian encapsulates various energy components, including exchange energy, DMI, Zeeman energy, and anisotropy energy, wherein factors such as saturation magnetization, DMI strength, exchange stiffness, and anisotropy constants influence their magnitudes. Conventionally, the estimation of these parameters has been computationally intensive and time-consuming. The CNN and SVR models can simultaneously estimate both the DMI constant and the exchange constant, making it a versatile tool for magnetic system characterization. The custom CNN model performs best for the DMI constant and A(ex) with R-2 scores of 0.991 and 0.998 respectively. The SVR model achieves R-2 scores of 0.927 and 0.989 for DMI constant and A(ex) respectively. The estimated values are in good agreement with true values, thus emphasizing the potential of ML methods for pattern recognition.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 27 条
[1]   Face Recognition and Classification Using GoogleNET Architecture [J].
Anand, R. ;
Shanthi, T. ;
Nithish, M. S. ;
Lakshman, S. .
SOFT COMPUTING FOR PROBLEM SOLVING, SOCPROS 2018, VOL 1, 2020, 1048 :261-269
[2]   Spintronic devices: a promising alternative to CMOS devices [J].
Barla, Prashanth ;
Joshi, Vinod Kumar ;
Bhat, Somashekara .
JOURNAL OF COMPUTATIONAL ELECTRONICS, 2021, 20 (02) :805-837
[3]   Evolution-Free Hamiltonian Parameter Estimation through Zeeman Markers [J].
Burgarth, Daniel ;
Ajoy, Ashok .
PHYSICAL REVIEW LETTERS, 2017, 119 (03)
[4]  
Gebregiorgis A., 2023, Memories-Mater., Devices, V4, P100025, DOI [10.1016/j.memori.2023.100025, DOI 10.1016/J.MEMORI.2023.100025]
[5]   Neuromorphic spintronics [J].
Grollier, J. ;
Querlioz, D. ;
Camsari, K. Y. ;
Everschor-Sitte, K. ;
Fukami, S. ;
Stiles, M. D. .
NATURE ELECTRONICS, 2020, 3 (07) :360-370
[6]   Toward computational materials design: The impact of density functional theory on materials research [J].
Hafner, Jurgen ;
Wolverton, Christopher ;
Ceder, Gerbrand .
MRS BULLETIN, 2006, 31 (09) :659-665
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]   Computational predictions of energy materials using density functional theory [J].
Jain, Anubhav ;
Shin, Yongwoo ;
Persson, Kristin A. .
NATURE REVIEWS MATERIALS, 2016, 1 (01)
[9]   Human body part estimation from depth images via spatially-constrained deep learning [J].
Jiu, Mingyuan ;
Wolf, Christian ;
Taylor, Graham ;
Baskurt, Atilla .
PATTERN RECOGNITION LETTERS, 2014, 50 :122-129
[10]   Machine learning analysis of tunnel magnetoresistance of magnetic tunnel junctions with disordered MgAl2O4 [J].
Ju, Shenghong ;
Miura, Yoshio ;
Yamamoto, Kaoru ;
Masuda, Keisuke ;
Uchida, Ken-ichi ;
Shiomi, Junichiro .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)