Conversational Complexity for Assessing Risk in Large Language Models

被引:0
|
作者
Burden, John [1 ]
Cebrian, Manuel [2 ]
Hernandez-Orallo, Jose [1 ,3 ]
机构
[1] Leverhulme Centre for the Future of Intelligence, University of Cambridge, United Kingdom
[2] Center for Automation and Robotics, Spanish National Research Council, Spain
[3] Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València, Spain
来源
arXiv |
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Risk assessment
引用
收藏
相关论文
共 50 条
  • [21] Safety Fine-Tuning at (Almost) No Cost: A Baseline for Vision Large Language Models
    Zong, Yongshuo
    Bohdal, Ondrej
    Yu, Tingyang
    Yang, Yongxin
    Hospedales, Timothy
    Proceedings of Machine Learning Research, 2024, 235 : 62867 - 62891
  • [22] A Comprehensive Framework for Evaluating API-oriented Code Generation in Large Language Models
    Wu, Yixi
    He, Pengfei
    Wang, Zehao
    Wang, Shaowei
    Tian, Yuan
    Chen, Tse-Hsun
    arXiv,
  • [23] Automatically Correcting Large Language Models: Surveying the Landscape of Diverse Automated Correction Strategies
    Pan, Liangming
    Saxon, Michael
    Xu, Wenda
    Nathani, Deepak
    Wang, Xinyi
    Wang, William Yang
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 484 - 506
  • [24] Privacy preserving large language models: ChatGPT case study based vision and framework
    Ullah, Imdad
    Hassan, Najm
    Gill, Sukhpal Singh
    Suleiman, Basem
    Ahanger, Tariq Ahamed
    Shah, Zawar
    Qadir, Junaid
    Kanhere, Salil S.
    IET Blockchain, 2024, 4 (S1): : 706 - 724
  • [25] Exploration of Generative Intelligent Application Mode for New Power Systems Based on Large Language Models
    Ding, Lifu
    Chen, Ying
    Xiao, Tannan
    Huang, Shaowei
    Shen, Chen
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2024, 48 (19): : 1 - 13
  • [26] Future-proofing geotechnics workflows: accelerating problem-solving with large language models
    Wu, Stephen
    Otake, Yu
    Mizutani, Daijiro
    Liu, Chang
    Asano, Kotaro
    Sato, Nana
    Baba, Hidetoshi
    Fukunaga, Yusuke
    Higo, Yosuke
    Kamura, Akiyoshi
    Kodama, Shinnosuke
    Metoki, Masataka
    Nakamura, Tomoka
    Nakazato, Yuto
    Saito, Taiga
    Shioi, Akihiro
    Takenobu, Masahiro
    Tsukioka, Keigo
    Yoshikawa, Ryo
    arXiv, 2023,
  • [27] Learning Mathematics with Large Language Models: A Comparative Study with Computer Algebra Systems and Other Tools
    Matzakos, Nikolaos
    Doukakis, Spyridon
    Moundridou, Maria
    International Journal of Emerging Technologies in Learning, 2023, 18 (20) : 51 - 71
  • [28] InteNSE: Interpretability, Robustness, and Benchmarking in Neural Software Engineering (Second Edition: Large Language Models)
    University of Illinois, Urbana-Champaign, United States
    不详
    不详
    不详
    Proc. - IEEE/ACM Int. Workshop Interpretability, Robust., Benchmarking Neural Softw. Eng. InteNSE, (VI):
  • [29] Evaluation of Open-Source Large Language Models for Metal-Organic Frameworks Research
    Bai, Xuefeng
    Xie, Yabo
    Zhang, Xin
    Han, Honggui
    Li, Jian-Rong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (13) : 4958 - 4965
  • [30] CommonIT: Commonality-Aware Instruction Tuning for Large Language Models via Data Partitions
    Rao, Jun
    Liu, Xuebo
    Lian, Lian
    Cheng, Shengjun
    Liao, Yunjie
    Zhang, Min
    EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 2024, : 10064 - 10083