OccCasNet: Occlusion-Aware Cascade Cost Volume for Light Field Depth Estimation

被引:1
|
作者
Chao, Wentao [1 ]
Duan, Fuqing [1 ]
Wang, Xuechun [1 ]
Wang, Yingqian [2 ]
Lu, Ke [3 ]
Wang, Guanghui [4 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
[2] Natl Univ Def Technol, Coll Elect Sci & Technol, Changsha 410073, Peoples R China
[3] Univ Chinese Acad Sci, Coll Engn Sci, Beijing 100049, Peoples R China
[4] Toronto Metropolitan Univ, Dept Comp Sci, Toronto, ON M5B 2K3, Canada
基金
中国国家自然科学基金;
关键词
Light field; depth estimation; cascade network; occlusion-aware; cost volume; NETWORK;
D O I
10.1109/TCI.2024.3488563
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Depth estimation using the Light Field (LF) technique is an essential task with a wide range of practical applications. While mainstream approaches based on multi-view stereo techniques can attain exceptional accuracy by creating finer cost volumes, they are resource-intensive, time-consuming, and often overlook occlusion during cost volume construction. To address these issues and strike a better balance between accuracy and efficiency, we propose an occlusion-aware cascade cost volume for LF depth (disparity) estimation. Our cascaded strategy reduces the sampling number while maintaining a constant sampling interval, enabling the construction of a finer cost volume. We also introduce occlusion maps to enhance accuracy in constructing the occlusion-aware cost volume. Specifically, we first generate a coarse disparity map through a coarse disparity estimation network. Then, we warp the sub-aperture images (SAIs) of adjacent views to the center view based on the coarse disparity map to generate occlusion maps for each SAI by photo-consistency constraints. Finally, we seamlessly incorporate occlusion maps into cascade cost volume to construct an occlusion-aware refined cost volume, allowing the refined disparity estimation network to yield a more precise disparity map. Extensive experiments demonstrate the effectiveness of our method. Compared with the state-of-the-art techniques, our method achieves a superior balance between accuracy and efficiency, ranking first in the Q25 metric on the HCI 4D benchmark.
引用
收藏
页码:1680 / 1691
页数:12
相关论文
共 50 条
  • [1] Occlusion-Aware Cost Constructor for Light Field Depth Estimation
    Wang, Yingqian
    Wang, Longguang
    Liang, Zhengyu
    Yang, Jungang
    An, Wei
    Guo, Yulan
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19777 - 19786
  • [2] A Novel Occlusion-Aware Vote Cost for Light Field Depth Estimation
    Han, Kang
    Xiang, Wei
    Wang, Eric
    Huang, Tao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8022 - 8035
  • [3] Occlusion-aware light field depth estimation with view attention
    Wang, Xucheng
    Tao, Chenning
    Zheng, Zhenrong
    OPTICS AND LASERS IN ENGINEERING, 2023, 160
  • [4] ACCURATE LIGHT FIELD DEPTH ESTIMATION VIA AN OCCLUSION-AWARE NETWORK
    Guo, Chunle
    Jin, Jing
    Hou, Junhui
    Chen, Jie
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [5] Occlusion-Aware Depth Estimation Using Sparse Light Field Coding
    Johannsen, Ole
    Sulc, Antonin
    Goldluecke, Bastian
    PATTERN RECOGNITION, GCPR 2016, 2016, 9796 : 207 - 218
  • [6] Occlusion-aware Depth Estimation Using Light-field Cameras
    Wang, Ting-Chun
    Efros, Alexei A.
    Ramamoorthi, Ravi
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3487 - 3495
  • [7] Light field depth estimation using occlusion-aware consistency analysis
    Wang, Xuechun
    Chao, Wentao
    Wang, Liang
    Duan, Fuqing
    VISUAL COMPUTER, 2023, 39 (08): : 3441 - 3454
  • [8] Light field depth estimation using occlusion-aware consistency analysis
    Xuechun Wang
    Wentao Chao
    Liang Wang
    Fuqing Duan
    The Visual Computer, 2023, 39 : 3441 - 3454
  • [9] Occlusion-aware depth estimation for light field using multi-orientation EPIs
    Sheng, Hao
    Zhao, Pan
    Zhang, Shuo
    Zhang, Jun
    Yang, Da
    PATTERN RECOGNITION, 2018, 74 : 587 - 599
  • [10] Occlusion-aware light field depth estimation using side window angular coherence
    Ma, Shuai
    Guo, Zhenghua
    Wu, Junlong
    Yan, Xu
    Zhu, Licheng
    Yang, Ping
    Wang, Shuai
    Wen, Lianghua
    Xu, Bing
    APPLIED OPTICS, 2021, 60 (02) : 392 - 404