Lean Blow-Off Behaviour of Premixed Bluff-Body Stabilized Hydrocarbon-Air Flames and Ammonia/Hydrogen/Nitrogen-Air Flames

被引:1
|
作者
Su, Tong [1 ]
Xu, Boyan [2 ]
Bastiaans, R. J. M. [2 ,3 ]
Worth, Nicholas A. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, NO-7034 Trondheim, Norway
[2] Eindhoven Univ Technol, Dept Mech Engn, Power & Flow, NL-5612 AJ Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Eindhoven Inst Renewable Energy Syst EIRES, NL-5600 MB Eindhoven, Netherlands
关键词
lean blow-off; ammonia/hydrogen/nitrogen-air flames; hydrocarbon-air flames; curvature; hydrodynamic strain rates; EMISSION CHARACTERISTICS; NO EMISSIONS; HYDROGEN; COMBUSTION; LAMINAR; METHANE; LIMITS; DYNAMICS;
D O I
10.1115/1.4065908
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The lean blow-off (LBO) behavior of turbulent premixed bluff-body stabilized hydrocarbon flames and ammonia/hydrogen/nitrogen flame was investigated and compared both experimentally and numerically. Simultaneous high-speed PIV and OH-PLIF were employed to resolve temporal flame and flow field information, allowing the curvature and hydrodynamic strain rates along the flame surface to be calculated. OH* and NH2* chemiluminescence images were also used to examine flame structures at the same bulk flow velocity but at four equivalence ratios from far away from to near LBO. A NH3/H-2/N-2 (70%/22.5%/7.5%) flame is slightly more resilient to LBO compared with methane and propane flames at 20 m/s. The hydrocarbon flame structures change from "V-shape" to "M-shape" when approaching lean blow-off, resulting in incomplete reactions and finally trigger the LBO. However, the strong OH* intensity in the shear layer near flame root for the ammonia blend flames indicates a robust reaction which can increase flame stability. Widely-distributed positive curvature along the flame surface of the NH3/H-2/N(2 )flames (Le < 1) may also enhance combustion. The smaller strain rates change along NH3/H-2/N-2 flame fronts due to less dramatic changes to the flame shape and position, which can extend the stability limits. Furthermore, the faster consumption rates of hydrogen near the flame root for the ammonia blend flames, and the lower temperature loss compared with the adiabatic temperature also contribute to the stabilization of ammonia blends near lean blow-off.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] LEAN BLOW-OFF BEHAVIOUR OF PREMIXED BLUFF-BODY STABILIZED HYDROCARBON-AIR FLAMES AND AMMONIA/HYDROGEN/NITROGEN-AIR FLAMES
    Su, Tong
    Xu, Boyan
    Bastiaans, R. J. M.
    Worth, Nicholas A.
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 3A, 2024,
  • [2] Visualization of blow-off events in bluff-body stabilized turbulent premixed flames
    Dawson, J. R.
    Gordon, R. L.
    Kariuki, J.
    Mastorakos, E.
    Masri, A. R.
    Juddoo, M.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 1559 - 1566
  • [3] Explosive dynamics of bluff-body-stabilized lean premixed hydrogen flames at blow-off
    Kim, Yu Jeong
    Song, Wonsik
    Perez, Francisco E. Hernandez
    Im, Hong G.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (02) : 2265 - 2274
  • [4] Modelling of a Bluff-Body Stabilised Premixed Flames Close to Blow-Off
    Amzin, Shokri
    Mohd Yasin, Mohd Fairus
    COMPUTATION, 2021, 9 (04)
  • [5] Lean Blow-Off Scaling of Turbulent Premixed Bluff-Body Flames of Vaporized Liquid Fuels
    Pathania, Rohit S.
    Skiba, Aaron W.
    Sidey-Gibbons, Jenni A. M.
    Mastorakos, Epaminondas
    JOURNAL OF PROPULSION AND POWER, 2021, 37 (03) : 479 - 486
  • [6] Hydrodynamic and chemical scaling for blow-off dynamics of lean premixed flames stabilized on a meso-scale bluff-body
    Kim, Yu Jeong
    Lee, Bok Jik
    Im, Hong G.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (02) : 1831 - 1841
  • [7] On the bi-stable nature of turbulent premixed bluff-body stabilized flames at elevated pressure and near lean blow-off
    Skiba, Aaron W.
    Guiberti, Thibault F.
    Boyette, Wesley R.
    Roberts, William L.
    Mastorakos, Epaminondas
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (02) : 2853 - 2860
  • [8] KINETICS OF NO AND CO IN LEAN, PREMIXED HYDROCARBON-AIR FLAMES
    WESTENBERG, AA
    COMBUSTION SCIENCE AND TECHNOLOGY, 1971, 4 (02) : 59 - +
  • [9] Measurements in turbulent premixed bluff body flames close to blow-off
    Kariuki, James
    Dawson, James R.
    Mastorakos, Epaminondas
    COMBUSTION AND FLAME, 2012, 159 (08) : 2589 - 2607
  • [10] A comparison of the blow-out behavior of turbulent premixed ammonia/hydrogen/nitrogen-air and methane-air flames
    Wiseman, Samuel
    Rieth, Martin
    Gruber, Andrea
    Dawson, James R.
    Chen, Jacqueline H.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (02) : 2869 - 2876