Automated Unmanned Aerial System for Camera-Based Semi-Automatic Triage Categorization in Mass Casualty Incidents

被引:0
作者
Moesch, Lucas [1 ]
Pokee, Diana Queiros [1 ]
Barz, Isabelle [2 ]
Mueller, Anna [1 ]
Follmann, Andreas [1 ]
Moormann, Dieter [2 ]
Czaplik, Michael [1 ]
Pereira, Carina Barbosa [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Anesthesiol, Fac Med, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, Inst Flight Syst Dynam, D-52062 Aachen, Germany
关键词
video; contactless; drones; extraction; mass-casualty incident; triage; RESPIRATORY RATE;
D O I
10.3390/drones8100589
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Using drones to obtain vital signs during mass-casualty incidents can be extremely helpful for first responders. Thanks to technological advancements, vital parameters can now be remotely assessed rapidly and robustly. This motivates the development of an automated unmanned aerial system (UAS) for patient triage, combining methods for the automated detection of respiratory-related movements and automatic classification of body movements and body poses with an already published algorithm for drone-based heart rate estimation. A novel UAS-based triage algorithm using UAS-assessed vital parameters is proposed alongside a robust UAS-based respiratory rate assessment and pose classification algorithm. A pilot concept study involving 15 subjects and 30 vital sign measurements under outdoor conditions shows that with our approach, an overall triage classification accuracy of 89% and an F1 score of 0.94 can be achieved, demonstrating its basic feasibility.
引用
收藏
页数:20
相关论文
共 35 条
[1]   A remotely piloted aircraft system in major incident management: Concept and pilot, feasibility study [J].
Abrahamsen H.B. .
BMC Emergency Medicine, 15 (1)
[2]   Life Signs Detector Using a Drone in Disaster Zones [J].
Al-Naji, Ali ;
Perera, Asanka G. ;
Mohammed, Saleem Latteef ;
Chahl, Javaan .
REMOTE SENSING, 2019, 11 (20)
[3]   Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle [J].
Al-Naji, Ali ;
Perera, Asanka G. ;
Chahl, Javaan .
BIOMEDICAL ENGINEERING ONLINE, 2017, 16
[4]   Photoplethysmography and its application in clinical physiological measurement [J].
Allen, John .
PHYSIOLOGICAL MEASUREMENT, 2007, 28 (03) :R1-R39
[5]   Development of the Aerial Remote Triage System using drones in mass casualty scenarios: A survey of international experts [J].
Alvarez-Garcia, Cristina ;
Camara-Anguita, Sixto ;
Maria Lopez-Hens, Jose ;
Granero-Moya, Nani ;
Dolores Lopez-Franco, Maria ;
Maria-Comino-Sanz, Ines ;
Sanz-Martos, Sebastian ;
Luis Pancorbo-Hidalgo, Pedro .
PLOS ONE, 2021, 16 (05)
[6]  
Barz I., 2022, Kollisionsfreie Flugbahnen fr Kippflgelflugzeuge auf Basis des Wavefront-Algorithmus unter Bercksichtigung Flugmechanischer Beschrnkungen
[7]   Non-Contact Breathing Rate Estimation Using Machine Learning with an Optimized Architecture [J].
Brieva, Jorge ;
Ponce, Hiram ;
Moya-Albor, Ernesto .
MATHEMATICS, 2023, 11 (03)
[8]  
Bubser F., 2014, Rettungsdienst, V37, P730
[9]  
Roig FJE, 2016, EMERGENCIAS, V28, P73
[10]   Augmented Reality for Guideline Presentation in Medicine: Randomized Crossover Simulation Trial for Technically Assisted Decision-making [J].
Follmann, Andreas ;
Ruhl, Alexander ;
Goesch, Michael ;
Felzen, Marc ;
Rossaint, Rolf ;
Czaplik, Michael .
JMIR MHEALTH AND UHEALTH, 2021, 9 (10)