Quantum algorithms for weighted constrained sampling and weighted model counting

被引:0
作者
Riguzzi, Fabrizio [1 ]
机构
[1] Univ Ferrara, Dept Math & Comp Sci, Via Machiavelli 30, I-44121 Ferrara, Italy
基金
欧盟地平线“2020”;
关键词
Quantum search; Quantum counting; Weighted model counting; Weighted constrained sampling; Most probable explanation; Maximum a posteriori; COMPLEXITY; INFERENCE;
D O I
10.1007/s42484-024-00209-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problems of weighted constrained sampling and weighted model counting, where we are given a propositional formula and a weight for each world. The first problem consists of sampling worlds with a probability proportional to their weight given that the formula is satisfied. The latter is the problem of computing the sum of the weights of the models of the formula. Both have applications in many fields such as probabilistic reasoning, graphical models, statistical physics, statistics, and hardware verification. In this article, we propose quantum weighted constrained sampling (QWCS) and quantum weighted model counting (QWMC), two quantum algorithms for performing weighted constrained sampling and weighted model counting, respectively. Both are based on the quantum search/quantum model counting algorithms that are modified to take into account the weights. In the black box model of computation, where we can only query an oracle for evaluating the Boolean function given an assignment, QWCS requires O(2n2+1/WMC)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2<^>{\frac{n}{2}}+1/\sqrt{\text {WMC}})$$\end{document} oracle calls, where n is the number of Boolean variables and WMC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {WMC}$$\end{document} is the normalized between 0 and 1 weighted model count of the formula, while a classical algorithm has a complexity of Omega(1/WMC)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (1/\text {WMC})$$\end{document}. QWMC takes Theta(2n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta (2<^>{\frac{n}{2}})$$\end{document} oracle calss, while classically the best complexity is Theta(2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta (2<^>n)$$\end{document}, thus achieving a quadratic speedup.
引用
收藏
页数:24
相关论文
共 61 条
  • [11] Chakraborty S, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P689
  • [12] Chakraborty S, 2014, AAAI CONF ARTIF INTE, P1722
  • [13] On probabilistic inference by weighted model counting
    Chavira, Mark
    Darwiche, Adnan
    [J]. ARTIFICIAL INTELLIGENCE, 2008, 172 (6-7) : 772 - 799
  • [14] Cleve R, 1998, P ROY SOC A-MATH PHY, V454, P339, DOI 10.1002/(SICI)1099-0526(199809/10)4:1<33::AID-CPLX10>3.0.CO
  • [15] 2-U
  • [16] Coppersmith D., 2002, arXiv, DOI 10.48550/arXiv.quant-ph/0201067
  • [17] A knowledge compilation map
    Darwiche, A
    Marquis, P
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2002, 17 : 229 - 264
  • [18] Recursive conditioning
    Darwiche, A
    [J]. ARTIFICIAL INTELLIGENCE, 2001, 126 (1-2) : 5 - 41
  • [19] Bucket elimination: A unifying framework for reasoning
    Dechter, R
    [J]. ARTIFICIAL INTELLIGENCE, 1999, 113 (1-2) : 41 - 85
  • [20] Eiter T, 2021, AAAI CONF ARTIF INTE, V35, P6304