Deep Quasi-Recurrent Self-Attention With Dual Encoder-Decoder in Biomedical CT Image Segmentation

被引:10
作者
Agarwal, Rohit [1 ]
Chowdhury, Arindam [1 ]
Chatterjee, Rajib Kumar [1 ]
Chel, Haradhan [2 ]
Murmu, Chiranjib [3 ]
Murmu, Narayan [1 ]
Nandi, Debashis [1 ]
机构
[1] Natl Inst Technol, Dept Comp Sci & Engn, Durgapur 713209, India
[2] Cent Inst Technol, Dept Elect & Commun Engn, Kokrajhar 783370, India
[3] Diamond Harbour Govt Med Coll, Diamond Harbour 743331, India
关键词
deep learning; encoder-decoder; Biomedical CT image segmentation; self-attention; U-Net;
D O I
10.1109/JBHI.2024.3447689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Developing deep learning models for accurate segmentation of biomedical CT images is challenging due to their complex structures, anatomy variations, noise, and unavailability of sufficient labeled data to train the models. There are many models in the literature, but the researchers are yet to be satisfied with their performance in analyzing biomedical Computed Tomography (CT) images. In this article, we pioneer a deep quasi-recurrent self-attention structure that works with a dual encoder-decoder. The proposed novel deep quasi-recurrent self-attention architecture evokes parameter reuse capability that offers consistency in learning and quick convergence of the model. Furthermore, the quasi-recurrent structure leverages the features acquired from the previous time points and elevates the segmentation quality. The model also efficiently addresses long-range dependencies through a selective focus on contextual information and hierarchical representation. Moreover, the dynamic and adaptive operation, incremental and efficient information processing of the deep quasi-recurrent self-attention structure leads to improved generalization across different scales and levels of abstraction. Along with the model, we innovate a new training strategy that fits with the proposed deep quasi-recurrent self-attention architecture. The model performance is evaluated on various publicly available CT scan datasets and compared with state-of-the-art models. The result shows that the proposed model outperforms them in segmentation quality and training speed. The model can assist physicians in improving the accuracy of medical diagnoses.
引用
收藏
页码:7195 / 7205
页数:11
相关论文
共 33 条
[1]   The Liver Tumor Segmentation Benchmark (LiTS) [J].
Bilic, Patrick ;
Christ, Patrick ;
Li, Hongwei Bran ;
Vorontsov, Eugene ;
Ben-Cohen, Avi ;
Kaissis, Georgios ;
Szeskin, Adi ;
Jacobs, Colin ;
Mamani, Gabriel Efrain Humpire ;
Chartrand, Gabriel ;
Lohoefer, Fabian ;
Holch, Julian Walter ;
Sommer, Wieland ;
Hofmann, Felix ;
Hostettler, Alexandre ;
Lev-Cohain, Naama ;
Drozdzal, Michal ;
Amitai, Michal Marianne ;
Vivanti, Refael ;
Sosna, Jacob ;
Ezhov, Ivan ;
Sekuboyina, Anjany ;
Navarro, Fernando ;
Kofler, Florian ;
Paetzold, Johannes C. ;
Shit, Suprosanna ;
Hu, Xiaobin ;
Lipkova, Jana ;
Rempfler, Markus ;
Piraud, Marie ;
Kirschke, Jan ;
Wiestler, Benedikt ;
Zhang, Zhiheng ;
Huelsemeyer, Christian ;
Beetz, Marcel ;
Ettlinger, Florian ;
Antonelli, Michela ;
Bae, Woong ;
Bellver, Miriam ;
Bi, Lei ;
Chen, Hao ;
Chlebus, Grzegorz ;
Dam, Erik B. ;
Dou, Qi ;
Fu, Chi-Wing ;
Georgescu, Bogdan ;
Giro-I-Nieto, Xavier ;
Gruen, Felix ;
Han, Xu ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2023, 84
[2]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[3]  
Chen J., 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]   MS-FANet: Multi-scale feature attention network for liver tumor segmentation [J].
Chen, Ying ;
Zheng, Cheng ;
Zhang, Wei ;
Lin, Hongping ;
Chen, Wang ;
Zhang, Guimei ;
Xu, Guohui ;
Wu, Fang .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
[6]   Efficient two-step liver and tumour segmentation on abdominal CT via deep learning and a conditional random field [J].
Chen, Ying ;
Zheng, Cheng ;
Hu, Fei ;
Zhou, Taohui ;
Feng, Longfeng ;
Xu, Guohui ;
Yi, Zhen ;
Zhang, Xiang .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
[7]   TD-Net: A Hybrid End-to-End Network for Automatic Liver Tumor Segmentation From CT Images [J].
Di, Shuanhu ;
Zhao, Yu-Qian ;
Liao, Miao ;
Zhang, Fan ;
Li, Xiong .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (03) :1163-1172
[8]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]
[9]   MFUnetr: A transformer-based multi-task learning network for multi-organ segmentation from partially labeled datasets [J].
Hao, Qin ;
Tian, Shengwei ;
Yu, Long ;
Wang, Junwen .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85
[10]   UNETR: Transformers for 3D Medical Image Segmentation [J].
Hatamizadeh, Ali ;
Tang, Yucheng ;
Nath, Vishwesh ;
Yang, Dong ;
Myronenko, Andriy ;
Landman, Bennett ;
Roth, Holger R. ;
Xu, Daguang .
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, :1748-1758