Enhanced physical hydrogen storage in g-C10N3 monolayer with lithium decoration: A first-principles study

被引:0
|
作者
Chen, Cai [1 ]
Xiang, Jing [2 ]
Ye, Lingyu [2 ]
Tao, Jing [2 ]
Chen, Xihao [2 ]
Gao, Peng [3 ]
Zhang, Che [4 ]
机构
[1] Chongqing Three Gorges Univ, Sch Civil Engn, Chongqing 404100, Peoples R China
[2] Chongqing Univ Arts & Sci, Chongqing Engn Res Ctr New Energy Storage Devices, Sch Mat Sci & Engn, Chongqing 402160, Peoples R China
[3] Univ Wollongong, Sch Chem & Mol Biosci, Wollongong, NSW 2500, Australia
[4] Univ Melbourne, Dept Mech Engn, Parkville, Vic 3010, Australia
关键词
Hydrogen storage; Li-decorated; Rapid kinetics; g-C10N3; HIGH-CAPACITY; COMPUTATIONAL EVALUATION; LI; CARBON; PREDICTION; TEMPERATURE; NANOSHEETS; BORON; C7N6;
D O I
10.1016/j.ijhydene.2024.11.126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pure g-C10N3 monolayer has low hydrogen gravimetric storage capacity due to the fact that their van der Waals interactions are not strong enough. In this study, we proposed a novel composite, Li degrees g-C10N3, for physical hydrogen storage based on first-principles calculations. Lithium (Li) atoms can securely anchor to g-C10N3 with a bonding energy of-3.37 eV, exhibiting excellent thermal stability. Li degrees g-C10N3 can hold 7 H2 molecules per unit cell around room temperature, achieving an 8.0 wt% gravimetric storage capacity with average adsorption energies ranging from-0.277 eV/H-2 to-0.208 eV/H-2. Desorption temperatures range from 269 K to 358 K, indicating good kinetic properties. Relative energy studies confirm Li degrees g-C10N3 as a promising energy storage material under moderate pressure (>6 bar) and room temperature conditions. The adsorption mechanism involves synergistic electrostatic and van der Waals interactions. We hope that more material-based hydrogen storage techniques will be developed in this direction.
引用
收藏
页码:747 / 754
页数:8
相关论文
共 50 条
  • [41] First-principles computational study of hydrogen storage in silicon clathrates
    Chan, Kwai S.
    Miller, Michael A.
    Peng, Xihong
    MATERIALS RESEARCH LETTERS, 2018, 6 (01): : 72 - 78
  • [42] First-principles study of monolayer Be2C as an anode material for lithium-ion batteries
    Yeoh, K. H.
    Chew, K-H
    Chu, Y. Z.
    Yoon, T. L.
    Rusi
    Ong, D. S.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (12)
  • [43] Influence of hydrogen and halogen adsorption on the photocatalytic water splitting activity of C2N monolayer: A first-principles study
    Kishore, M. R. Ashwin
    Sjastad, Anja Olafsen
    Ravindran, P.
    CARBON, 2019, 141 : 50 - 58
  • [44] Lithium doped g-C6N7 monolayer as a reversible hydrogen storage media
    Tong, Xiaogang
    Yang, Shuping
    Zhu, Guangyu
    Hou, Wenjie
    Wu, Qi
    Li, Jiwen
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 1477 - 1488
  • [45] Enhanced thermoelectric efficiency of monolayer InP3 under strain: a first-principles study
    Keshri, Sonu Prasad
    Medhi, Amal
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (22)
  • [46] Tunable electronic structure of monolayer semiconductor g-C2N by adsorbing transition metals: A first-principles study
    Zheng, Z. D.
    Wang, X. C.
    Mi, W. B.
    CARBON, 2016, 109 : 764 - 770
  • [47] Hydrogen storage capacities of alkali and alkaline-earth metal atoms on SiC monolayer: A first-principles study
    Arellano, Lucia G.
    de Santiago, Francisco
    Miranda, Alvaro
    Salazar, Fernando
    Trejo, Alejandro
    Perez, Luis A.
    Cruz-Irisson, Miguel
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (38) : 20266 - 20279
  • [48] First-principles study of NaMgH3 by fluorine anion doping for hydrogen storage
    Niu Xue-Lian
    Deng Yu-Fu
    Li Xue
    ACTA PHYSICA SINICA, 2009, 58 (10) : 7317 - 7321
  • [49] Hydrogen storage on pristine and Li-decorated BC6N monolayer from first-principles insights
    Rahimi, Rezvan
    Solimannejad, Mohammad
    MOLECULAR PHYSICS, 2021, 119 (05)
  • [50] First-principles insights of na-decorated B7N5 monolayer for advanced hydrogen storage
    Liu, Zizhong
    Chen, Xihao
    Liao, Yuehong
    Zhang, Longxin
    Laranjeira, Jose A. S.
    SURFACES AND INTERFACES, 2025, 58