Spatiotemporal vegetation dynamics in a highly urbanized Chilean coastal wetland: Insights on long-term natural and anthropogenic influences

被引:1
作者
Munizaga, Juan [1 ]
Rojas, Octavio [1 ]
Lagos, Bernardo [2 ]
Rojas, Carolina [3 ,8 ]
Yépez, Santiago [4 ]
Hernández, Esteban [5 ]
Ureta, Fernando [6 ]
de la Barrera, Francisco [1 ,8 ]
Jato-Espino, Daniel [7 ]
机构
[1] Facultad de Ciencias Ambientales, Centro EULA-Chile, Departamento de Planificación Territorial y Sistemas Urbanos, Universidad de Concepción, Víctor Lamas 1290, Concepción
[2] Departamento de Estadística, Universidad de Concepción, Víctor Lamas 1290, Concepción
[3] Instituto de Estudios Urbanos y Territoriales, Pontificia Universidad Católica de Chile, Instituto Milenio en Socio-Ecología Costera SECOS, El Comendador 1916 7520245, Providencia
[4] Departamento Manejo de Bosques y Medio Ambiente, Facultad de Ciencias Forestales, Victor Lamas 1290 4070386, Universidad de Concepción
[5] Pares y Alvarez Gestión Ambiental, Marco Polo 8939, Hualpén
[6] Departamento de Ingeniería Metalúrgica, Facultad de Ingeniería, Universidad de Concepción, Victor Lamas 1290 4070386, Concepción
[7] GREENIUS Research Group, Universidad Internacional de Valencia – VIU, Valle Pintor Sorolla 21, Valencia
关键词
Anthropogenic stressors; Coastal wetland vegetation; Natural disturbances; Remote sensing;
D O I
10.1016/j.ecolind.2024.112919
中图分类号
学科分类号
摘要
This study analyzes the spatiotemporal dynamics of the vegetation of a highly urbanized coastal wetland in the 2000–2020 period, considering natural disturbances and anthropogenic stressors. The wetland system was stratified into four domains: Coastal, Intertidal, Freshwater, and Urban, differentiated by their geomorphological, topographical, and water salinity characteristics, which were validated by ground vegetation sampling. In these domains, spectral indicators of vegetation were used on 884 Landsat images in the Google Earth Engine to determine vegetation types, trends, and phenology. The start of the growing season coincides with the beginning of the Austral winter, exhibiting seasonal behavior, which was interrupted by abrupt natural disturbances such as floods and tsunamis. In addition, a progressive trend associated with the replacement of native species by exotic species was reported in areas with significant anthropogenic stressors (e.g., highways, city edges, and grazing areas), with 45 % presenting an increase in the normalized difference vegetation index. Areas far from anthropogenic stressors maintained their behavior, which is explained by natural factors such as precipitation, temperature, and evapotranspiration. The proposed method strengthens our understanding of the interrelationship between factors that modify the behavior of vegetation in coastal wetlands pressured by anthropogenic stressors and contributes to their management and protection. © 2024 The Authors
引用
收藏
相关论文
共 108 条
[61]  
Moraga D., Vivancos A., Ruiz V.H., Rojas O., Diaz G., Manosalva A., Vega P., Habit E., A century of anthropogenic river alterations in a highly diverse river coastal basin: Effects on fish assemblages, Front. Environ. Sci., 10, (2022)
[62]  
Munizaga J., Garcia M., Ureta F., Novoa V., Rojas O., Rojas C., Mapping coastal wetlands using satellite imagery and machine learning in a highly urbanized landscape, Sustainability, 14, (2022)
[63]  
Narron C.R., O'Connell J.L., Mishra D.R., Cotten D.L., Hawman P.A., Mao L., Flooding in Landsat across tidal systems (FLATS): An index for intermittent tidal filtering and frequency detection in salt marsh environments, Ecol. Indic., 141, (2022)
[64]  
Negrin V.L., de Villalobos A.E., Trilla G.G., Botte S.E., Marcovecchio J.E., Above- and belowground biomass and nutrient pools of Spartina alterniflora (smooth cordgrass) in a South American salt marsh, Chem. Ecol., 28, pp. 391-404, (2012)
[65]  
Newton A., Icely J., Cristina S., Perillo G.M.E., Turner R.E., Ashan D., Cragg S., Luo Y., Tu C., Li Y., Zhang H., Ramesh R., Forbes D.L., Solidoro C., Bejaoui B., Gao S., Pastres R., Kelsey H., Taillie D., Nhan N., Brito A.C., de Lima R., Kuenzer C., Anthropogenic, direct pressures on coastal wetlands, Front. Ecol. Evol., 8, (2020)
[66]  
Orusa T., Viani A., Cammareri D., Borgogno Mondino E., A Google Earth Engine algorithm to map phenological metrics in mountain areas worldwide with landsat collection and Sentinel-2, Geomatics, 3, pp. 221-238, (2023)
[67]  
Ostrowski A., Connolly R.M., Sievers M., Evaluating multiple stressor research in coastal wetlands: A systematic review, Mar. Environ. Res., 164, (2021)
[68]  
Peters J., Verhoest N.E.C., Samson R., Boeckx P., De Baets B., Wetland vegetation distribution modelling for the identification of constraining environmental variables, Landsc. Ecol., 23, pp. 1049-1065, (2008)
[69]  
Pratolongo P., Leonardi N., Kirby J.R., Plater A., Chapter 3 - Temperate Coastal Wetlands: Morphology, Sediment Processes, and Plant Communities, pp. 105-152, (2019)
[70]  
Ramirez C., Alvarez M., Hydrophilic Flora and Vegetation of the Coastal Wetlands of Chile, pp. 71-103, (2017)