Design, construction, and test of compact, distributed-charge, X-band accelerator systems that enable image-guided, VHEE FLASH radiotherapy

被引:1
作者
Barty, Christopher P. J. [1 ,2 ,3 ]
Algots, J. Martin [1 ]
Amador, Alexander J. [1 ]
Barty, James C. R. [1 ]
Betts, Shawn M. [1 ]
Castaneda, Marcelo A. [1 ]
Chu, Matthew M. [1 ]
Daley, Michael E. [1 ]
Lopez, Ricardo A. De Luna [1 ]
Diviak, Derek A. [1 ]
Effarah, Haytham H. [1 ,2 ,3 ]
Feliciano, Roberto [1 ]
Garcia, Adan [1 ]
Grabiel, Keith J. [1 ]
Griffin, Alex S. [1 ]
Hartemann, Frederic V. [1 ]
Heid, Leslie [1 ,2 ]
Hwang, Yoonwoo [1 ]
Imeshev, Gennady [1 ]
Jentschel, Michael [1 ]
Johnson, Christopher A. [1 ]
Kinosian, Kenneth W. [1 ]
Lagzda, Agnese [1 ]
Lochrie, Russell J. [1 ]
May, Michael W. [1 ]
Molina, Everardo [1 ]
Nagel, Christopher L. [1 ]
Nagel, Henry J. [1 ]
Peirce, Kyle R. [1 ]
Peirce, Zachary R. [1 ]
Quinonez, Mauricio E. [1 ]
Raksi, Ferenc [1 ]
Ranganath, Kelanu [1 ]
Reutershan, Trevor [1 ,2 ,3 ]
Salazar, Jimmie [1 ]
Schneider, Mitchell E. [1 ]
Seggebruch, Michael W. L. [1 ,2 ]
Yang, Joy Y. [1 ]
Yeung, Nathan H. [1 ]
Zapata, Collette B. [1 ]
Zapata, Luis E. [1 ]
Zepeda, Eric J. [1 ]
Zhang, Jingyuan [1 ]
机构
[1] Lumitron Technol Inc, Irvine, CA 92617 USA
[2] Univ Calif Irvine, Phys & Astron Dept, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Beckman Laser Inst & Med Clin, Irvine, CA 92617 USA
来源
FRONTIERS IN PHYSICS | 2024年 / 12卷
关键词
lasers; x-rays; laser-Compton scattering; accelerators; X-band; flash; high-resolution radiography; VHEE; INVERSE COMPTON-SCATTERING; HIGH-ENERGY ELECTRONS; THOMSON-SCATTERING; RADIATION-THERAPY; OPTICAL RADIATION; FILM MEASUREMENTS; PHOTON; LIGHT; PULSE; PLEIADES;
D O I
10.3389/fphy.2024.1472759
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates ( similar to 10 Gy in less than 100 ns). The physics of laser-Compton x-ray scattering ensures that the x-rays produced by this process follow exactly the trajectory of the electrons from which the x-rays were produced, thus providing a route to not only compact VHEE radiotherapy but also image-guided, VHEE FLASH radiotherapy. This manuscript will review the compact accelerator architecture considerations that simultaneously optimize the production of laser-Compton x-rays from the collision of energetic laser pulses with high energy electrons and the production of high-bunch-charge VHEEs. The primary keys to this optimization are use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 mu A of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x rays via laser-Compton scattering for clinical imaging and does so from a machine of "clinical" footprint. At the same time, the production of 1,000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.
引用
收藏
页数:18
相关论文
共 85 条
[1]   Normal-conducting RF structure test facilities and results [J].
Adolphsen, C .
PROCEEDINGS OF THE 2003 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-5, 2003, :668-672
[2]   Narrow-band photon beam via laser Compton scattering in an energy recovery linac [J].
Akagi, T. ;
Kosuge, A. ;
Araki, S. ;
Hajima, R. ;
Honda, Y. ;
Miyajima, T. ;
Mori, M. ;
Nagai, R. ;
Nakamura, N. ;
Shimada, M. ;
Shizuma, T. ;
Terunuma, N. ;
Urakawa, J. .
PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2016, 19 (11)
[3]   Three-dimensional theory of weakly nonlinear Compton scattering [J].
Albert, F. ;
Anderson, S. G. ;
Gibson, D. J. ;
Marsh, R. A. ;
Siders, C. W. ;
Barty, C. P. J. ;
Hartemann, F. V. .
PHYSICS OF PLASMAS, 2011, 18 (01)
[4]   Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ-ray source [J].
Albert, F. ;
Anderson, S. G. ;
Gibson, D. J. ;
Hagmann, C. A. ;
Johnson, M. S. ;
Messerly, M. ;
Semenov, V. ;
Shverdin, M. Y. ;
Rusnak, B. ;
Tremaine, A. M. ;
Hartemann, F. V. ;
Siders, C. W. ;
McNabb, D. P. ;
Barty, C. P. J. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2010, 13 (07)
[5]   Short-pulse, high-brightness X-ray production with the PLEIADES Thomson-scattering source [J].
Anderson, SG ;
Barty, CPJ ;
Betts, SM ;
Brown, WJ ;
Crane, JK ;
Cross, RR ;
Fittinghoff, DN ;
Gibson, DJ ;
Hartemann, FV ;
Kuba, J ;
LeSage, GP ;
Rosenzweig, JB ;
Slaughter, DR ;
Springer, PT ;
Tremaine, AM .
APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 78 (7-8) :891-894
[6]   THE COMPTON EFFECT ON RELATIVISTIC ELECTRONS AND THE POSSIBILITY OF OBTAINING HIGH ENERGY BEAMS [J].
ARUTYUNIAN, FR ;
TUMANIAN, VA .
PHYSICS LETTERS, 1963, 4 (03) :176-178
[7]  
Barty C., 2004, Tech. rep.
[8]  
Barty CPJ, 2017, United States patent, Patent No. [US9706631B2, 9706631]
[9]   Development of a novel fibre optic beam profile and dose monitor for very high energy electron radiotherapy at ultrahigh dose rates [J].
Bateman, Joseph J. ;
Buchanan, Emma ;
Corsini, Roberto ;
Farabolini, Wilfrid ;
Korysko, Pierre ;
Larsen, Robert Garbrecht ;
Malyzhenkov, Alexander ;
Ruiz, Inaki Ortega ;
Rieker, Vilde ;
Gerbershagen, Alexander ;
Dosanjh, Manjit .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (08)
[10]   Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom [J].
Bazalova-Carter, Magdalena ;
Liu, Michael ;
Palma, Bianey ;
Dunning, Michael ;
McCormick, Doug ;
Hemsing, Erik ;
Nelson, Janice ;
Jobe, Keith ;
Colby, Eric ;
Koong, Albert C. ;
Tantawi, Sami ;
Dolgashev, Valery ;
Maxim, Peter G. ;
Loo, Billy W., Jr. .
MEDICAL PHYSICS, 2015, 42 (04) :1606-1613