Optimized feature extraction and object detection for indoor dynamic environment visual SLAM study

被引:0
作者
Wang, Wencheng [1 ,2 ]
Wang, Yingchao [1 ]
Wu, Zhenmin [1 ]
机构
[1] Guilin Univ Technol, Coll Mech & Control Engn, Guilin 541006, Peoples R China
[2] Guilin Univ Technol, Guangxi Key Lab Adv Mfg & Automat Technol Univ, Guilin, Peoples R China
关键词
Indoor dynamic environment; visual SLAM; object detection; visual odometry; TRACKING; ORB;
D O I
10.1177/17298806241279610
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This study introduces the YORB-SLAM algorithm, a novel approach that integrates an enhanced ORB-SLAM2 framework with a lightweight YOLOv5 model to improve the robustness and accuracy of visual SLAM systems in indoor dynamic environments. By incorporating a variable threshold FAST corner detection algorithm, we optimize feature point extraction performance under unstable lighting conditions. An improved quadtree algorithm not only accelerates feature extraction but also retains richer image information. Further, we tailor a lightweight YOLOv5 model to our application scenario through self-training and devise a set of dynamic feature point elimination rules, significantly boosting performance in dynamic indoor scenes. Evaluations on six dynamic indoor sequences from the TUM dataset show that YORB-SLAM significantly outperforms the original ORB-SLAM2 in accuracy and exhibits better real-time capabilities than DS-SLAM and DynaSLAM.
引用
收藏
页数:14
相关论文
共 26 条
[1]   Real-Time Artificial Intelligence Based Visual Simultaneous Localization and Mapping in Dynamic Environments - a Review [J].
Aasim, Wan Faris Aizat Wan ;
Okasha, Mohamed ;
Faris, Waleed Fekry .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2022, 105 (01)
[2]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[3]   ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM [J].
Campos, Carlos ;
Elvira, Richard ;
Gomez Rodriguez, Juan J. ;
Montiel, Jose M. M. ;
Tardos, Juan D. .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (06) :1874-1890
[4]   A Quick Development Toolkit for Augmented Reality Visualization (QDARV) of a Factory [J].
Chen, Chengjun ;
Liang, Runbei ;
Pan, Yong ;
Li, Dongnian ;
Zhao, Zhengxu ;
Guo, Yang ;
Zhang, Qinghai .
APPLIED SCIENCES-BASEL, 2022, 12 (16)
[5]   Direct Sparse Odometry [J].
Engel, Jakob ;
Koltun, Vladlen ;
Cremers, Daniel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) :611-625
[6]   AHY-SLAM: Toward Faster and More Accurate Visual SLAM in Dynamic Scenes Using Homogenized Feature Extraction and Object Detection Method [J].
Gong, Han ;
Gong, Lei ;
Ma, Tianbing ;
Sun, Zhicheng ;
Li, Liang .
SENSORS, 2023, 23 (09)
[7]  
Howard A., Searching for MobileNetV3, P1314
[8]   Incorporating learnt local and global embeddings into monocular visual SLAM [J].
Huang, Huaiyang ;
Ye, Haoyang ;
Sun, Yuxiang ;
Wang, Lujia ;
Liu, Ming .
AUTONOMOUS ROBOTS, 2021, 45 (06) :789-803
[9]   A Monocular Vision Sensor-Based Efficient SLAM Method for Indoor Service Robots [J].
Lee, Tae-jae ;
Kim, Chul-hong ;
Cho, Dong-il Dan .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (01) :318-328
[10]   YOLO-FIRI: Improved YOLOv5 for Infrared Image Object Detection [J].
Li, Shasha ;
Li, Yongjun ;
Li, Yao ;
Li, Mengjun ;
Xu, Xiaorong .
IEEE ACCESS, 2021, 9 :141861-141875