Vacuum preparation of charge transport layers for perovskite solar cells and modules

被引:0
作者
Luo, Tian [1 ,2 ]
Liu, Lu [1 ]
Du, Minyong [1 ]
Wang, Kai [1 ]
Liu, Shengzhong [1 ,3 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Ctr Mat Sci & Optoelect Engn, Key Lab Photoelect Convers & Utilizat Solar Energy, Dalian 116023, Peoples R China
[2] Shaanxi Normal Univ, Sch Mat Sci & Engn, Key Lab Appl Surface & Colloid Chem, Shaanxi Engn Lab Adv Energy Technol,Minist Educ, Xian 710119, Shaanxi, Peoples R China
[3] CNNP Optoelect Technol, 2828 Canghai Rd, Shanghai, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ORGANOMETAL HALIDE PEROVSKITE; OPEN-CIRCUIT VOLTAGE; P-I-N; BAND-GAP PEROVSKITES; HOLE-BLOCKING LAYER; ELECTRON-TRANSPORT; LOW-TEMPERATURE; HIGH-PERFORMANCE; HIGHLY EFFICIENT; NICKEL-OXIDE;
D O I
10.1039/d4ta06502f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The successful large-scale fabrication of perovskite solar modules at the square meter level represents a significant milestone in the industrialization process of perovskite photovoltaic technology. In the fabrication of perovskite solar modules, cost-effective solution-based methods are commonly employed for the preparation of the perovskite layer due to their ability to ensure film uniformity with a thickness of approximately 500 nm. However, achieving uniformly coated charge transport layers (CTLs) at square meter levels using solution methods remains a formidable challenge due to the ultrathin nature of the CTLs, which is a few tens of nanometers thick. The fulfillment of this requirement necessitates the exclusive utilization of vacuum deposition technology for CTL preparation. This review focuses on vacuum deposition methods, including magnetron sputtering, atomic layer deposition, electron-beam evaporation, thermal evaporation, chemical vapor deposition and pulsed laser deposition for the fabrication of CTLs in perovskite solar cells and modules. We highlight the advantages and drawbacks of various deposition techniques, while summarizing the CTLs that can be deposited via each method, encompassing thin film characteristics and optimization strategies. Finally, we conclude with some perspectives and challenges for future research on vacuum methods for CTLs in perovskite solar cells.
引用
收藏
页码:1669 / 1710
页数:42
相关论文
共 323 条
  • [51] CH3NH3PbI3-Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide
    Cui, Jin
    Meng, Fanping
    Zhang, Hua
    Cao, Kun
    Yuan, Huailiang
    Cheng, Yibing
    Huang, Feng
    Wang, Mingkui
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (24) : 22862 - 22870
  • [52] Efficient monolithic all-perovskite tandem solar modules with small cell-to-module derate
    Dai, Xuezeng
    Chen, Shangshang
    Jiao, Haoyang
    Zhao, Liang
    Wang, Ke
    Ni, Zhenyi
    Yu, Zhenhua
    Chen, Bo
    Gao, Yongli
    Huang, Jinsong
    [J]. NATURE ENERGY, 2022, 7 (10) : 923 - 931
  • [53] Influence of hole transport material ionization energy on the performance of perovskite solar cells
    Danekamp, Benedikt
    Droseros, Nikolaos
    Tsokkou, Demetra
    Brehm, Verena
    Boix, Pablo P.
    Sessolo, Michele
    Banerji, Natalie
    Bolink, Henk J.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (03) : 523 - 527
  • [54] Perovskite-Perovskite Homojunctions via Compositional Doping
    Danekamp, Benedikt
    Mueller, Christian
    Sendner, Michael
    Boix, Pablo P.
    Sessolo, Michele
    Lovrincic, Robert
    Bolink, Henk J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (11): : 2770 - 2775
  • [55] Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating
    Di Giacomo, Francesco
    Shanmugam, Santhosh
    Fledderus, Henri
    Bruijnaers, Bardo J.
    Verhees, Wiljan J. H.
    Dorenkamper, Maarten S.
    Veenstra, Sjoerd C.
    Qiu, Weiming
    Gehlhaar, Robert
    Merckx, Tamara
    Aernouts, Tom
    Andriessen, Ronn
    Galagan, Yulia
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 181 : 53 - 59
  • [56] The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures
    Dong, Xu
    Hu, Hongwei
    Lin, Bencai
    Ding, Jianning
    Yuan, Ningyi
    [J]. CHEMICAL COMMUNICATIONS, 2014, 50 (92) : 14405 - 14408
  • [57] Interface Reactive Sputtering of Transparent Electrode for High-Performance Monolithic and Stacked Perovskite Tandem Solar Cells
    Dong, Yiman
    Yu, Runnan
    Su, Gangfeng
    Ma, Zongwen
    He, Zhangwei
    Wang, Ruyue
    Zhang, Yuling
    Yang, Jing
    Gong, Yongshuai
    Li, Minghua
    Tan, Zhan'ao
    [J]. ADVANCED MATERIALS, 2024, 36 (26)
  • [58] Sequential Molecule-Doped Hole Conductor to Achieve >23% Perovskite Solar Cells with 3000-Hour Operational Stability
    Du, Guozheng
    Yang, Li
    Dong, Peiyao
    Qi, Lianlian
    Che, Yuliang
    Wang, Xiao
    Zhang, Xiaoli
    Zhang, Jinbao
    [J]. ADVANCED MATERIALS, 2023, 35 (35)
  • [59] Evaporated Undoped Spiro-OMeTAD Enables Stable Perovskite Solar Cells Exceeding 20% Efficiency
    Du, Guozheng
    Yang, Li
    Zhang, Cuiping
    Zhang, Xiaoli
    Rolston, Nicholas
    Luo, Zhide
    Zhang, Jinbao
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (22)
  • [60] Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules
    Du, Minyon
    Zhao, Shua
    Duan, Lianjie
    Cao, Yuexian
    Wang, Hui
    Sun, Youming
    Wang, Likun
    Zhu, Xuejie
    Feng, Jiangshan
    Liu, Lu
    Jiang, Xiao
    Dong, Qingshun
    Shi, Yantao
    Wang, Kai
    Liu, Shengzhong Frank
    [J]. JOULE, 2022, 6 (08) : 1931 - 1943