Optimized Clinical Feature Analysis for Improved Cardiovascular Disease Risk Screening

被引:1
|
作者
Vyshnya, Sofiya [1 ]
Epperson, Rachel [1 ]
Giuste, Felipe [1 ]
Shi, Wenqi [2 ]
Hornback, Andrew [3 ]
Wang, May D. [1 ,4 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Dept Computat Sci & Engn, Atlanta, GA 30332 USA
[4] Emory Univ, Atlanta, GA 30332 USA
来源
IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY | 2024年 / 5卷
关键词
Feature extraction; Predictive models; Pain; Electrocardiography; Classification algorithms; Machine learning; Biomedical engineering; Cardiovascular disease; feature interpretation; machine learning; personalized medicine; risk prediction; CORONARY-HEART-DISEASE; PREDICTION; EVENTS; ANGINA;
D O I
10.1109/OJEMB.2023.3347479
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: To develop a clinical decision support tool that can predict cardiovascular disease (CVD) risk with high accuracy while requiring minimal clinical feature input, thus reducing the time and effort required by clinicians to manually enter data prior to obtaining patient risk assessment. Results: In this study, we propose a robust feature selection approach that identifies five key features strongly associated with CVD risk, which have been found to be consistent across various models. The machine learning model developed using this optimized feature set achieved state-of-the-art results, with an AUROC of 91.30%, sensitivity of 89.01%, and specificity of 85.39%. Furthermore, the insights obtained from explainable artificial intelligence techniques enable medical practitioners to offer personalized interventions by prioritizing patient-specific high-risk factors. Conclusion: Our work illustrates a robust approach to patient risk prediction which minimizes clinical feature requirements while also generating patient-specific insights to facilitate shared decision-making between clinicians and patients.
引用
收藏
页码:816 / 827
页数:12
相关论文
共 50 条
  • [21] Development and validation of optimal phenomapping methods to estimate long-term atherosclerotic cardiovascular disease risk in patients with type 2 diabetes
    Segar, Matthew W.
    Patel, Kershaw V.
    Vaduganathan, Muthiah
    Caughey, Melissa C.
    Jaeger, Byron C.
    Basit, Mujeeb
    Willett, Duwayne
    Butler, Javed
    Sengupta, Partho P.
    Wang, Thomas J.
    McGuire, Darren K.
    Pandey, Ambarish
    DIABETOLOGIA, 2021, 64 (07) : 1583 - 1594
  • [22] The Mediterranean diet, plasma metabolome, and cardiovascular disease risk
    Li, Jun
    Guasch-Ferre, Marta
    Chung, Wonil
    Ruiz-Canela, Miguel
    Toledo, Estefania
    Corella, Dolores
    Bhupathiraju, Shilpa N.
    Tobias, Deirdre K.
    Tabung, Fred K.
    Hu, Jie
    Zhao, Tong
    Turman, Constance
    Feng, Yen-Chen Anne
    Clish, Clary B.
    Mucci, Lorelei
    Eliassen, A. Heather
    Costenbader, Karen H.
    Karlson, Elizabeth W.
    Wolpin, Brian M.
    Ascherio, Alberto
    Rimm, Eric B.
    Manson, JoAnn E.
    Qi, Lu
    Angel Martinez-Gonzalez, Miguel
    Salas-Salvado, Jordi
    Hu, Frank B.
    Liang, Liming
    EUROPEAN HEART JOURNAL, 2020, 41 (28) : 2645 - +
  • [23] Cardiovascular Disease Risk Prediction in the HIV Outpatient Study
    Thompson-Paul, Angela M.
    Lichtenstein, Kenneth A.
    Armon, Carl
    Palella, Frank J., Jr.
    Skarbinski, Jacek
    Chmiel, Joan S.
    Hart, Rachel
    Wei, Stanley C.
    Loustalot, Fleetwood
    Brooks, John T.
    Buchacz, Kate
    CLINICAL INFECTIOUS DISEASES, 2016, 63 (11) : 1508 - 1516
  • [24] Cardiovascular disease screening
    Duffy, Jennifer Y.
    Hameed, Afshan B.
    SEMINARS IN PERINATOLOGY, 2015, 39 (04) : 264 - 267
  • [25] Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk
    Alexandros C. Dimopoulos
    Mara Nikolaidou
    Francisco Félix Caballero
    Worrawat Engchuan
    Albert Sanchez-Niubo
    Holger Arndt
    José Luis Ayuso-Mateos
    Josep Maria Haro
    Somnath Chatterji
    Ekavi N. Georgousopoulou
    Christos Pitsavos
    Demosthenes B. Panagiotakos
    BMC Medical Research Methodology, 18
  • [26] Diabetes, Cardiovascular Disease, and Cardiovascular Risk in Patients with Chronic Kidney Disease
    De Lima, Jose J. G.
    Gowdak, Luis Henrique W.
    David-Neto, Elias
    Bortolotto, Luiz A.
    HIGH BLOOD PRESSURE & CARDIOVASCULAR PREVENTION, 2021, 28 (02) : 159 - 165
  • [27] Predicting coronary heart disease with advanced machine learning classifiers for improved cardiovascular risk assessment
    Moiz Ur Rehman
    Shahid Naseem
    Ateeq Ur Rehman Butt
    Tariq Mahmood
    Amjad Rehman Khan
    Inayat Khan
    Jawad Khan
    Younhyun Jung
    Scientific Reports, 15 (1)
  • [28] Usefulness of Novel Screening Tests for Cardiovascular Disease
    Wang, Thomas J.
    ARCHIVES OF INTERNAL MEDICINE, 2011, 171 (04) : 284 - 285
  • [29] Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention
    Hoogeveen, Renate M.
    Pereira, Joao P. Belo
    Nurmohamed, Nick S.
    Zampoleri, Veronica
    Bom, Michiel J.
    Baragetti, Andrea
    Boekholdt, S. Matthijs
    Knaapen, Paul
    Khaw, Kay-Tee
    Wareham, Nicholas J.
    Groen, Albert K.
    Catapano, Alberico L.
    Koenig, Wolfgang
    Levin, Evgeni
    Stroes, Erik S. G.
    EUROPEAN HEART JOURNAL, 2020, 41 (41) : 3998 - 4007
  • [30] Cardiovascular risk in patients without known cardiovascular disease
    Carbone, R. G.
    Algahim, M. F.
    Rizzo, S.
    Monselise, A.
    Dart, R. A.
    Almassi, G. H.
    Gutterman, D. D.
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2014, 18 (03) : 365 - 373