Synchronization of Generalized Lorenz Systems in a Loop

被引:0
作者
Rehak, Branislav [1 ]
Celikovsky, Sergej [1 ]
Lynnyk, Volodymyr [1 ]
Lynnyk, Anna [1 ]
机构
[1] Czech Acad Sci, Inst Informat Theory & Automat, Pod Vodarenskou Vezi 4, Prague 18200, Czech Republic
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 14期
关键词
Generalized Lorenz system; synchronization; cyclic network; STABILITY; PHASE; CHAOS;
D O I
10.1142/S0218127424501827
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The conditions for the synchronization of three interconnected generalized Lorenz systems are given. The interconnection topology contains a loop. It is shown that, under certain conditions on the strength of the coupling of the systems, the full synchronization of all three systems is guaranteed. The results are illustrated by an example.
引用
收藏
页数:14
相关论文
共 25 条
[1]   Finite-time generalized synchronization of nonidentical delayed chaotic systems [J].
Bao, Haibo ;
Cao, Jinde .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2016, 21 (03) :306-324
[2]   On Lorenz and Chen Systems [J].
Barboza, Ruy .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (01)
[3]   Robust synchronization of a class of chaotic networks [J].
Celikovsky, S. ;
Lynnyk, V. ;
Chen, G. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (10) :2936-2948
[4]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[5]  
CELIKOVSKY S, 1994, KYBERNETIKA, V30, P403
[6]   GENERALIZED SYNCHRONIZATION IN THE NETWORKS WITH DIRECTED ACYCLIC STRUCTURE [J].
Celikovsky, Sergej ;
Lynnyk, Volodymyr ;
Lynnyk, Anna ;
Rehak, Branislav .
KYBERNETIKA, 2023, 59 (03) :437-460
[7]   Generalized Lorenz Canonical Form Revisited [J].
Celikovsky, Sergej ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (05)
[8]  
Chen G., 2014, Fundamentals of complex networks: models, structures and dynamics, V2nd ed.
[9]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47
[10]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819