Multiphysics Coupling in IGBT Modules: A Review

被引:0
作者
Tian, Weiqiang [1 ]
Chen, Naichao [1 ,2 ,3 ]
机构
[1] Shanghai Univ Elect Power, Sch Energy & Mech Engn, Shanghai 200090, Peoples R China
[2] Shanghai Key Lab Mat Protect & Adv Mat Elect Power, Shanghai 200090, Peoples R China
[3] Shanghai Noncarbon Energy Convers & Utilizat Inst, Shanghai 200240, Peoples R China
关键词
IGBT models; multiphysics coupling; failure mechanisms; reliability; MODEL-ORDER REDUCTION; PRESS-PACK IGBTS; MECHANICAL ANALYSIS; POWER; TEMPERATURE; LIFETIME; CONTACTS; BEHAVIOR;
D O I
10.1115/1.4065941
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Since insulated gate bipolar transistor (IGBT) is a core component for power conversion in a power electronic system, guaranteeing the safety of IGBT becomes a crucial task for the maintenance of the power system. However, the mechanism of IGBT failure is a considerably complicated process related to the dynamic process, involving electric, thermal, and mechanical. Hence, understanding the behaviors of IGBT under multiphysics fields coupling plays an important role in the design and reliability studies of IGBT. In this paper, we review the multiphysics coupling effects, namely, electrical-thermal coupling, thermal-mechanical coupling, and mechanical-electrical coupling, inside IGBT modules. The basic principles of each coupling, coupling models, reliability analysis, as well as key issues and development trends are discussed in detail, respectively.
引用
收藏
页数:13
相关论文
共 100 条
  • [1] A Review on IGBT Module Failure Modes and Lifetime Testing
    Abuelnaga, Ahmed
    Narimani, Mehdi
    Bahman, Amir Sajjad
    [J]. IEEE ACCESS, 2021, 9 : 9643 - 9663
  • [2] Reliability Assessment of IGBT Through Modelling and Experimental Testing
    Ahsan, Mominul
    How, Siew Teay
    Batunlu, Canras
    Albarbar, Alhussein
    [J]. IEEE ACCESS, 2020, 8 (08): : 39561 - 39573
  • [3] A High-Precision Adaptive Thermal Network Model for Monitoring of Temperature Variations in Insulated Gate Bipolar Transistor (IGBT) Modules
    An, Ning
    Du, Mingxing
    Hu, Zhen
    Wei, Kexin
    [J]. ENERGIES, 2018, 11 (03):
  • [4] The Effect of the Surface Roughness Characteristics of the Contact Interface on the Thermal Contact Resistance of the PP-IGBT Module
    An, Tong
    Li, Zezheng
    Zhang, Yakun
    Qin, Fei
    Wang, Liang
    Lin, Zhongkang
    Tang, Xinling
    Dai, Yanwei
    Gong, Yanpeng
    Chen, Pei
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (06) : 7286 - 7298
  • [5] Azzopardi S., 2012, 13 INT THERM MECH MU, P1
  • [6] A Lumped Thermal Model Including Thermal Coupling and Thermal Boundary Conditions for High-Power IGBT Modules
    Bahman, Amir Sajjad
    Ma, Ke
    Blaabjerg, Frede
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2018, 33 (03) : 2518 - 2530
  • [7] IGBT Junction Temperature Measurement via Peak Gate Current
    Baker, Nick
    Munk-Nielsen, Stig
    Iannuzzo, Francesco
    Liserre, Marco
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (05) : 3784 - 3793
  • [8] The future of power semiconductor device technology
    Baliga, BJ
    [J]. PROCEEDINGS OF THE IEEE, 2001, 89 (06) : 822 - 832
  • [9] Lumped Dynamic Electrothermal Model of IGBT Module of Inverters
    Batard, Christophe
    Ginot, Nicolas
    Antonios, Joe
    [J]. IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2015, 5 (03): : 355 - 364
  • [10] Bayerer R., 2008, P IEEE 5 INT C INT P, P1