Few-shot learning based histopathological image classification of colorectal cancer

被引:2
作者
Li, Rui [1 ]
Li, Xiaoyan [2 ]
Sun, Hongzan [3 ]
Yang, Jinzhu [1 ]
Rahaman, Md [8 ]
Grzegozek, Marcin [4 ,5 ]
Jiang, Tao [6 ,7 ]
Huang, Xinyu [4 ,5 ]
Li, Chen [1 ]
机构
[1] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang 110167, Liaoning, Peoples R China
[2] China Med Univ, Canc Hosp, Shenyang 110122, Liaoning, Peoples R China
[3] China Med Univ, Shengjing Hosp, Shenyang 110000, Liaoning, Peoples R China
[4] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[5] Univ Econ Poland, Dept Knowledge Engn, Katowice, Poland
[6] Chengdu Univ Tradit Chinese Med, Sch Intelligent Med, Chengdu 610075, Sichuan, Peoples R China
[7] Chengdu Univ Informat Technol, Int Joint Inst Robot & Intelligent Syst, Chengdu 610225, Sichuan, Peoples R China
[8] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
来源
INTELLIGENT MEDICINE | 2024年 / 4卷 / 04期
基金
中国国家自然科学基金;
关键词
Colorectal cancer; Few-shot learning; Transfer learning; Contrastive learning; Histopathological images; Benign and malignant categories;
D O I
10.1016/j.imed.2024.05.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background Colorectal cancer is a prevalent and deadly disease worldwide, posing significant diagnostic challenges. Traditional histopathologic image classification is often inefficient and subjective. Although some histopathologists use computer-aided diagnosis to improve efficiency, these methods depend heavily on extensive data and specific annotations, limiting their development. To address these challenges, this paper proposes a method based on few-shot learning. Methods This study introduced a few-shot learning approach that combines transfer learning and contrastive learning to classify colorectal cancer histopathology images into benign and malignant categories. The model comprises modules for feature extraction, dimensionality reduction, and classification, trained using a combination of contrast loss and cross-entropy loss. In this paper, we detailed the setup of hyperparameters: n-way, k-shot, p , and the creation of support, query, and test datasets. Results Our method achieved over 98% accuracy on a query dataset with 35 samples per category using only 10 training samples per category. We documented the model's loss, accuracy, and the confusion matrix of the results. Additionally, we employed the t-SNE algorithm to analyze and assess the model's classification performance. Conclusion The proposed model may demonstrate significant advantages in accuracy and minimal data dependency, performing robustly across all tested n-way, k-shot scenarios. It consistently achieved over 93% accuracy on comprehensive test datasets, including 1916 samples, confirming its high classification accuracy and strong generalization capability. Our research could advance the use of few-shot learning in medical diagnostics and also lays the groundwork for extending it to deal with rare, difficult-to-diagnose cases.
引用
收藏
页码:256 / 267
页数:12
相关论文
共 50 条
[1]   Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review [J].
Bernal, Jose ;
Kushibar, Kaisar ;
Asfaw, Daniel S. ;
Valverde, Sergi ;
Oliver, Arnau ;
Marti, Robert ;
Llado, Xavier .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 95 :64-81
[2]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[3]   Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks [J].
Burt, Jeremy R. ;
Torosdagli, Neslisah ;
Khosravan, Naji ;
Raviprakash, Harish ;
Mortazi, Aliasghar ;
Tissavirasingham, Fiona ;
Hussein, Sarfaraz ;
Bagci, Ulas .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1089)
[4]   Few-Shot Learning for Medical Image Classification [J].
Cai, Aihua ;
Hu, Wenxin ;
Zheng, Jun .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 :441-452
[5]   SVIA dataset: A new dataset of microscopic videos and images for computer-aided sperm analysis [J].
Chen, Ao ;
Li, Chen ;
Zou, Shuojia ;
Rahaman, Md Mamunur ;
Yao, Yudong ;
Chen, Haoyuan ;
Yang, Hechen ;
Zhao, Peng ;
Hu, Weiming ;
Liu, Wanli ;
Grzegorzek, Marcin .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) :204-214
[6]   GasHis-Transformer: A multi-scale visual transformer approach for gastric histopathological image detection [J].
Chen, Haoyuan ;
Li, Chen ;
Wang, Ge ;
Li, Xiaoyan ;
Rahaman, Md Mamunur ;
Sun, Hongzan ;
Hu, Weiming ;
Li, Yixin ;
Liu, Wanli ;
Sun, Changhao ;
Ai, Shiliang ;
Grzegorzek, Marcin .
PATTERN RECOGNITION, 2022, 130
[7]   IL-MCAM: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach [J].
Chen, Haoyuan ;
Li, Chen ;
Li, Xiaoyan ;
Rahaman, Md Mamunur ;
Hu, Weiming ;
Li, Yixin ;
Liu, Wanli ;
Sun, Changhao ;
Sun, Hongzan ;
Huang, Xinyu ;
Grzegorzek, Marcin .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
[8]  
Chhikara BS, 2023, CHEM BIOL LETT, V10
[9]  
de Matos J, 2019, Arxiv, DOI arXiv:1904.07900
[10]   Multi-Prototype Few-shot Learning in Histopathology [J].
Deuschel, Jessica ;
Firmbach, Daniel ;
Geppert, Carol, I ;
Eckstein, Markus ;
Hartmann, Arndt ;
Bruns, Volker ;
Kuritcyn, Petr ;
Dexl, Jakob ;
Hartmann, David ;
Perrin, Dominik ;
Wittenberg, Thomas ;
Benz, Michaela .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :620-628