Redox-active polymer electrode materials for potassium storage: structure design, electrochemical performance, and storage mechanism

被引:0
|
作者
Fang, Ying [1 ]
Zhu, Guo-Yu [1 ]
Zhu, Ning-Ning [1 ]
Xiao, Ji-Miao [1 ]
Yi, Zi-Jian [1 ]
Huang, Bai-Hua [1 ]
Wang, Bo [1 ]
Liu, Lin [2 ]
Bin, De-Shan [1 ]
Li, Dan [1 ]
机构
[1] Jinan Univ, Coll Chem & Mat Sci, Guangdong Prov Key Lab Supramol Coordinat Chem, Guangzhou 510632, Guangdong, Peoples R China
[2] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
K -based battery; Polymer electrode materials; Electronic conductivity; Solubility; Battery performance; COVALENT ORGANIC FRAMEWORKS; ANODE MATERIALS; ENERGY-STORAGE; K-ION; BATTERIES; CATHODE;
D O I
10.1016/j.jechem.2025.01.062
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Benefiting from the low cost and high abundance of potassium resources, K-based batteries have attracted numerous research interest as a more sustainable battery chemist, particularly when considering the enormous demand for sustainable energy storage while limiting Li sources for Li-based batteries. However, the much larger size of the K-ion usually leads to the serious electrodes' volumetric expansion with rapid capacity fading, making the pursuit of electrodes for potassium storage with high capacity and high stability a significant challenge. The polymer electrode materials have been considered promising materials to address these issues due to their porous characteristics, insolubility in electrolytes, and flexible structural design at a molecular level. In this review, we outline the recent advancements in redox-active polymer electrodes, including anode and cathode, materials for K-based batteries, including crystalline porous coordination polymers, crystalline covalent organic polymers, amorphous polymers, and polymer composites. We discuss the electrode designs, electrochemical performances, and K-ion storage mechanism, with a focus on their structure-function correlations. With this knowledge, we propose the perspectives and challenges in designing advanced polymer electrode materials for K-based batteries. We expect this review will shed light on the further development of reliable polymer electrode materials. (c) 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:312 / 325
页数:14
相关论文
共 50 条
  • [1] Redox-active polymers (redoxmers) for electrochemical energy storage
    Yang, Mengxi
    Liu, Kewei
    Shkrob, Ilya A.
    Liao, Chen
    MRS COMMUNICATIONS, 2019, 9 (04) : 1151 - 1167
  • [2] Redox-active polymers (redoxmers) for electrochemical energy storage
    Mengxi Yang
    Kewei Liu
    Ilya A. Shkrob
    Chen Liao
    MRS Communications, 2019, 9 : 1151 - 1167
  • [3] DESIGN OF ACTIVE SITES IN CARBON MATERIALS FOR ELECTROCHEMICAL POTASSIUM STORAGE
    Geng, Chao
    Chen, Ya-Xin
    Shi, Li-Luo
    Sun, Zong-Fu
    Zhang, Lei
    Xiao, An-Yong
    Jiang, Jiang-Min
    Zhuang, Quan-Chao
    Ju, Zhi-Cheng
    CARBON, 2022, 197 : 579 - 579
  • [4] Redox-Active Organic Materials: From Energy Storage to Redox Catalysis
    Kim, Jaehwan
    Ling, Jianheng
    Lai, Yihuan
    Milner, Phillip J.
    ACS MATERIALS AU, 2024, 4 (03): : 258 - 273
  • [5] Intrinsically flexible redox-active polyurethanes for electrochemical energy storage
    Mackanic, David
    Cui, Yi
    Bao, Zhenan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [6] Versatile Redox-Active Organic Materials for Rechargeable Energy Storage
    Kwon, Giyun
    Ko, Youngmin
    Kim, Youngsu
    Kim, Kyoungoh
    Kang, Kisuk
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (23) : 4423 - 4433
  • [7] Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism
    Qiu, Daping
    Hou, Yanglong
    GREEN ENERGY & ENVIRONMENT, 2023, 8 (01) : 115 - 140
  • [8] Carbon materials toward efficient potassium storage: Rational design,performance evaluation and potassium storage mechanism
    Daping Qiu
    Yanglong Hou
    Green Energy & Environment, 2023, 8 (01) : 115 - 140
  • [9] Redox-active polymers for energy storage
    Lutkenhaus, Jodie
    Verduzco, Rafael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [10] Redox-active covalent organic frameworks for pseudocapacitive electrochemical energy storage
    Mulzer, Catherine
    Dichtel, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254