Using Time-Series Databases for Energy Data Infrastructures

被引:0
|
作者
Hadjichristofi, Christos [1 ]
Diochnos, Spyridon [1 ]
Andresakis, Kyriakos [2 ]
Vescoukis, Vassilios [1 ,3 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Software Engn Lab, Athens 15773, Greece
[2] Natl Tech Univ Athens, Sch Elect & Comp Engn, Elect Energy Syst Lab, Athens 15773, Greece
[3] Natl Tech Univ Athens, Sch Rural Surveying & Geoinformat Engn, Athens 15773, Greece
关键词
timeseries data; energy markets data; energy data infrastructures; INFORMATION; IMPUTATION; SYSTEMS; STORAGE;
D O I
10.3390/en17215478
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The management of energy market data, such as load, production, forecasts, and prices, is critical for energy market participants, who develop in-house energy data infrastructure services to aggregate data from many sources to support their business operations. Energy data management frequently involves time sensitive operations, including rapid data ingestion, real-time querying, filling in gaps from missing or delayed data, and updating large volumes of timestamped and loosely structured data, all of which demand high processing power. Traditional relational database management systems (RDBMSs) often struggle with these operations, whereas time series databases (TSDBs) appear to be a more efficient solution, providing enhanced scalability, reliability, real-time data availability and superior performance. This paper examines the advantages of TSDBs over RDBMS for energy data management, demonstrating that TSDBs can either replace or complement RDBMSs. We present quantitative improvements in digestion, integration, architecture, and performance, demonstrating that operations such as importing and querying time-series energy data, along with the overall system's efficiency, can be significantly improved, achieving up to 100 times faster operations compared to relational databases, all without requiring extensive modifications to the existing information system's architecture.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Aggregation Agent for Preprocessing and Forecasting Time-Series Data
    Muntean, Maria Viorela
    Onita, Daniela
    PROCEEDINGS OF THE 2018 10TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI), 2018,
  • [22] OPTIMIZATION OF TIME-SERIES DATA PARTITIONING FOR PARAMETER IDENTIFICATION
    Sarkar, Soumik
    Mukherjee, Kushal
    Jin, Xin
    Ray, Asok
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2010, VOL 1, 2010, : 867 - 874
  • [23] Time-Series Data and Analysis Software of Connected Vehicles
    Lee, Jaekyu
    Lee, Sangyub
    Choi, Hyosub
    Cho, Hyeonjoong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (03): : 2709 - 2727
  • [24] Neural Decomposition of Time-Series Data for Effective Generalization
    Godfrey, Luke B.
    Gashler, Michael S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (07) : 2973 - 2985
  • [25] Parallel Dimensionality Reduction Transformation for Time-Series Data
    Hoang Chi Thanh
    2009 FIRST ASIAN CONFERENCE ON INTELLIGENT INFORMATION AND DATABASE SYSTEMS, 2009, : 104 - 108
  • [26] Controlled-Sized Clustering for Time-Series Data
    Tsuda, Nobuhiko
    Hamasuna, Yukihiro
    2020 JOINT 11TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 21ST INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS-ISIS), 2020, : 245 - 249
  • [27] On Some Fuzzy Clustering Algorithms for Time-Series Data
    Fujita, Mizuki
    Kanzawa, Yuchi
    INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING (IUKM 2022), 2022, 13199 : 169 - 181
  • [28] Automatic Land-Cover Mapping using Landsat Time-Series Data based on Google Earth Engine
    Xie, Shuai
    Liu, Liangyun
    Zhang, Xiao
    Yang, Jiangning
    Chen, Xidong
    Gao, Yuan
    REMOTE SENSING, 2019, 11 (24)
  • [29] Data mining of time-series medical data by formal concept analysis
    Sato, Kenji
    Okubo, Yoshiaki
    Haraguchi, Iakoto
    Kunifuji, Susumu
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT II, PROCEEDINGS, 2007, 4693 : 1214 - 1221
  • [30] Clustering Time-Series Gene Expression Data with Unequal Time Intervals
    Rueda, Luis
    Bari, Ataul
    Ngom, Alioune
    TRANSACTIONS ON COMPUTATIONAL SYSTEMS BIOLOGY X, 2008, 5410 : 100 - 123