Electric Field Modulation of Water Transport in Carbon Nanotubes: Insights from Molecular Dynamics Simulations

被引:0
|
作者
Li, Haiping [1 ]
Wang, Shibin [1 ]
Zheng, Jingnan [1 ]
Wang, Jianguo [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, Inst Ind Catalysis, State Key Lab Breeding Base Green Chem Synth Techn, Hangzhou 310032, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PHYSICAL-PROPERTIES; MEMBRANES;
D O I
10.1021/acs.jpcc.4c06249
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
At the nanoscale, fluid transport properties exhibit notable deviations from those observed at the macroscale. The flow dynamics of these fluids are influenced by various factors, including electric fields, pressure gradients, and intermolecular interactions. Although the transport of polar molecules, such as water, within nanochannels has been extensively investigated, the fundamental mechanisms within these channels-particularly the impact of electric fields on the unidirectional transport of fluids under a constant pressure differential-remain inadequately understood. Therefore, a deeper investigation into the effects of electric fields on fluid mass transport within nanochannels is crucial for achieving more precise control over fluid. This study employs molecular dynamics (MD) simulations to investigate the influence of electric fields on pressure-driven water transport through carbon nanotubes. The findings reveal that, under a parallel electric field, the stability of hydrogen bonds among water molecules within the carbon nanotubes is markedly improved, leading to a linear decrease in water flux with increasing electric field strength. Conversely, exposure to a perpendicular electric field induces nonlinear changes in water flux, with a significant reduction or complete cessation occurring once the electric field strength exceeds a certain threshold. This phenomenon occurs because the perpendicular electric field disrupts the hydrogen bonding network among water molecules in carbon nanotubes, thereby increasing the energy barrier for water molecules to traverse the nanotubes. Additionally, we investigate the influence of electric fields on the transport characteristics of heavy water (D2O), evaluating the variations in mass transfer for distinct isotopes of the same element. We found that the reduced flow rate of D2O within carbon nanotubes can be attributed to an increase in the density of hydrogen bonds present in D2O, coupled with a pronounced enhancement of the hydrogen bonding network. This augmentation contributes to a significant elevation in the energy barrier associated with the ingress of D2O into the carbon nanotubes. This study contributes to the understanding and design of carbon nanotubes for water molecule transport under electric field modulation.
引用
收藏
页码:21190 / 21200
页数:11
相关论文
共 50 条
  • [31] Separation of water-alcohol mixtures using carbon nanotubes under an electric field
    Winarto
    Yamamoto, Eiji
    Yasuoka, Kenji
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (28) : 15431 - 15438
  • [32] Italicized carbon nanotube facilitating water transport: a molecular dynamics simulation
    Li, Jipeng
    Kong, Xian
    Lu, Diannan
    Liu, Zheng
    SCIENCE BULLETIN, 2015, 60 (18) : 1580 - 1586
  • [33] Molecular dynamics simulation of ion separation and water transport through boron nitride nanotubes
    Azamat, Jafar
    Sardroodi, Jaber Jahanbin
    Rastkar, Alireza
    DESALINATION AND WATER TREATMENT, 2015, 56 (04) : 1090 - 1098
  • [34] Water transport through carbon nanotubes with defects
    Nicholls, W. D.
    Borg, M. K.
    Lockerby, D. A.
    Reese, J. M.
    MOLECULAR SIMULATION, 2012, 38 (10) : 781 - 785
  • [35] Pressure-driven molecular dynamics simulations of water transport through a hydrophilic nanochannel
    Richard, Renou
    Anthony, Szymczyk
    Ghoufi, Aziz
    MOLECULAR PHYSICS, 2016, 114 (18) : 2655 - 2663
  • [36] Insights from molecular dynamics simulations of albumin adsorption on hydrophilic and hydrophobic surfaces
    Moulod, Mohammad
    Moghaddam, Saeed
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2022, 112
  • [37] Sodium chloride solution transport through a carbon nanotube with an embedded carbon nanotube via molecular dynamics simulations
    Meng, X. W.
    Wang, L. Y.
    CHEMICAL PHYSICS LETTERS, 2024, 849
  • [38] Porous carbon nanotubes: Molecular absorption, transport, and separation
    Yzeiri, Irena
    Patra, Niladri
    Kral, Petr
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (10)
  • [39] Molecular dynamics simulations of ion transport through carbon nanotubes. I. Influence of geometry, ion specificity, and many-body interactions
    Beu, Titus A.
    JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (16)
  • [40] Modeling Ultrafast Transport of Water Clusters in Carbon Nanotubes
    Baowan, Duangkamon
    Thamwattana, Ngamta
    ACS OMEGA, 2023, 8 (30): : 27366 - 27374