Effects of rotation and inclined load on a nonlocal fiber-reinforced solid with temperature-dependent using the modified Green-Lindsay theory

被引:0
作者
Said, Samia M. [1 ]
Othman, Mohamed I. A. [1 ]
Fathy, nia A. [1 ]
Gamal, Esraa M. [1 ]
机构
[1] Zagazig Univ, Fac Sci, Dept Math, POB 44519, Zagazig, Egypt
关键词
fiber-reinforced thermoelastic solid; Modified Green-Lindsay model; nonlocal parameter; normal mode analysis; temperature-dependent properties; WAVE-PROPAGATION; HALF-SPACE; THERMOELASTICITY; 2-TEMPERATURE; GRAVITY; STRESS; MODEL;
D O I
10.12989/sem.2024.92.5.503
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Using a modified Green-Lindsay model, the issue in a nonlocal rotating fiber-reinforced thermo-elastic solid is examined. A formula for the analytical treatment of physical fields is produced by introducing the normal mode analysis. A comparison is made between physical fields for various values of the nonlocal parameter, an empirical material constant, inclined load, and rotation. Rotation, inclined load, an empirical material constant, and the nonlocal parameter all have positive effects on the physical variables. When a nonlocal fiber-reinforced thermoelastic solid is swapped out for a thermoelastic one, this approach still holds true. Normal mode analysis applied to a wide range of problems in hydrodynamics and thermoelasticity. It is also found that the modified Green-Lindsay theory is more efficient in determining the wave propagation phenomenon.
引用
收藏
页码:503 / 511
页数:9
相关论文
共 43 条
[1]   The Effect of Rotation and Initial Stress on Thermal Shock Problem for a Fiber-Reinforced Anisotropic Half-Space Using Green-Naghdi Theory [J].
Abbas, Ibrahim A. ;
Zenkour, Ashraf M. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2014, 11 (02) :331-338
[2]   Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order [J].
Abd-Alla, A. M. ;
Abo-Dahab, S. M. ;
Khan, Aftab .
STRUCTURAL ENGINEERING AND MECHANICS, 2017, 61 (02) :221-230
[3]   Generalized Heat Equation with the Caputo-Fabrizio Fractional Derivative for a Nonsimple Thermoelastic Cylinder with Temperature-Dependent Properties [J].
Abouelregal, A. E. ;
Sofiyev, A. H. ;
Sedighi, H. M. ;
Fahmy, M. A. .
PHYSICAL MESOMECHANICS, 2023, 26 (02) :224-240
[4]   Generalized Moore-Gibson-Thompson thermoelastic fractional derivative model without singular kernels for an infinite orthotropic thermoelastic body with temperature-dependent properties [J].
Abouelregal, Ahmed E. ;
Fahmy, Mohammad A. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (07)
[5]   Analysis of the magneto-thermoelastic vibrations of rotating Euler-Bernoulli nanobeams using the nonlocal elasticity model [J].
Abouelregal, Ahmed E. E. ;
Marin, Marin ;
Askar, Sameh S. S. .
BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
[6]   Fiber-reinforced micropolar thermoelastic rotating Solid with voids and two-temperature in the context of memory-dependent derivative [J].
Alharbi, Amnah M. ;
Said, Samia M. ;
Abd Elaziz, Elsayed M. ;
Othman, Mohamed I. A. .
GEOMECHANICS AND ENGINEERING, 2022, 28 (04) :347-358
[8]   A Modified Two-Relaxation Thermoelastic Model for a Thermal Shock of Rotating Infinite Medium [J].
Aljadani, Maryam H. ;
Zenkour, Ashraf M. .
MATERIALS, 2022, 15 (24)
[9]   UNIQUENESS OF INITIAL-BOUNDARY VALUE-PROBLEMS IN NONLOCAL ELASTICITY [J].
ALTAN, SB .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1989, 25 (11) :1271-1278
[10]   Generalized thermo-piezoelectric problems with temperature-dependent properties [J].
Aouadi, Moncef .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (21) :6347-6358