Plasmon-enhanced Brillouin light scattering spectroscopy for magnetic systems: Theoretical model

被引:1
作者
Lozovski, Valeri [1 ,2 ]
V. Chumak, Andrii [3 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Educ Sci Inst High Technol, 4 g Hlushkov Ave, UA-03022 Kiev, Ukraine
[2] Erwin Schrodinger Int Inst Math & Phys, Boltzmanngasse 9, A-1090 Vienna, Austria
[3] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
SPIN-WAVES; ELECTRODYNAMICS;
D O I
10.1103/PhysRevB.110.184419
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Brillouin light scattering (BLS) spectroscopy is an effective method for detecting spin waves in magnetic thin films and nanostructures. While it provides extensive insight into the properties of spin waves, BLS spectroscopy is impeded in many practical cases by the limited range of detectable spin wave wave numbers and its low sensitivity. Here we present a generalized theoretical model describing plasmon-enhanced BLS spectroscopy. Three types of plasmonic nanoparticles in the shape of an ellipsoid of rotation are considered: a single plasmon resonator, a sandwiched plasmonic structure in which two nanoparticles are separated by a dielectric spacer, and an ensemble of metallic nanoparticles on the surface of a magnetic film. The effective susceptibilities for the plasmonic systems at the surface of the magnetic film are calculated using the electrodynamic Green's function method, and the enhancement coefficient is defined. It is analytically shown that the ratio of the plasmon resonator height to its radius plays a key role in the development of plasmon-enhanced BLS spectroscopy. The developed model serves as a basis for the numerical engineering of the optimized plasmon nanoparticle morphology for BLS enhancement.
引用
收藏
页数:12
相关论文
共 30 条
[1]  
BAH ML, 1992, SURF SCI REP, V16, P95, DOI 10.1016/0167-5729(92)90010-9
[2]   The 2021 Magnonics Roadmap [J].
Barman, Anjan ;
Gubbiotti, Gianluca ;
Ladak, S. ;
Adeyeye, A. O. ;
Krawczyk, M. ;
Grafe, J. ;
Adelmann, C. ;
Cotofana, S. ;
Naeemi, A. ;
Vasyuchka, V., I ;
Hillebrands, B. ;
Nikitov, S. A. ;
Yu, H. ;
Grundler, D. ;
Sadovnikov, A., V ;
Grachev, A. A. ;
Sheshukova, S. E. ;
Duquesne, J-Y ;
Marangolo, M. ;
Csaba, G. ;
Porod, W. ;
Demidov, V. E. ;
Urazhdin, S. ;
Demokritov, S. O. ;
Albisetti, E. ;
Petti, D. ;
Bertacco, R. ;
Schultheiss, H. ;
Kruglyak, V. V. ;
Poimanov, V. D. ;
Sahoo, S. ;
Sinha, J. ;
Yang, H. ;
Munzenburg, M. ;
Moriyama, T. ;
Mizukami, S. ;
Landeros, P. ;
Gallardo, R. A. ;
Carlotti, G. ;
Kim, J-, V ;
Stamps, R. L. ;
Camley, R. E. ;
Rana, B. ;
Otani, Y. ;
Yu, W. ;
Yu, T. ;
Bauer, G. E. W. ;
Back, C. ;
Uhrig, G. S. ;
Dobrovolskiy, O., V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (41)
[3]   Fast long-wavelength exchange spin waves in partially compensated Ga:YIG [J].
Boettcher, T. ;
Ruhwedel, M. ;
Levchenko, K. O. ;
Wang, Q. ;
Chumak, H. L. ;
Popov, M. A. ;
Zavislyak, I. V. ;
Dubs, C. ;
Surzhenko, O. ;
Hillebrands, B. ;
Chumak, A. V. ;
Pirro, P. .
APPLIED PHYSICS LETTERS, 2022, 120 (10)
[4]  
Bozhko DA, 2016, NAT PHYS, V12, P1057, DOI [10.1038/nphys3838, 10.1038/NPHYS3838]
[5]   Advances in Magnetics Roadmap on Spin-Wave Computing [J].
Chumak, A. V. ;
Kabos, P. ;
Wu, M. ;
Abert, C. ;
Adelmann, C. ;
Adeyeye, A. O. ;
Akerman, J. ;
Aliev, F. G. ;
Anane, A. ;
Awad, A. ;
Back, C. H. ;
Barman, A. ;
Bauer, G. E. W. ;
Becherer, M. ;
Beginin, E. N. ;
Bittencourt, V. A. S. V. ;
Blanter, Y. M. ;
Bortolotti, P. ;
Boventer, I. ;
Bozhko, D. A. ;
Bunyaev, S. A. ;
Carmiggelt, J. J. ;
Cheenikundil, R. R. ;
Ciubotaru, F. ;
Cotofana, S. ;
Csaba, G. ;
Dobrovolskiy, O. V. ;
Dubs, C. ;
Elyasi, M. ;
Fripp, K. G. ;
Fulara, H. ;
Golovchanskiy, I. A. ;
Gonzalez-Ballestero, C. ;
Graczyk, P. ;
Grundler, D. ;
Gruszecki, P. ;
Gubbiotti, G. ;
Guslienko, K. ;
Haldar, A. ;
Hamdioui, S. ;
Hertel, R. ;
Hillebrands, B. ;
Hioki, T. ;
Houshang, A. ;
Hu, C. -M. ;
Huebl, H. ;
Huth, M. ;
Iacocca, E. ;
Jungfleisch, M. B. ;
Kakazei, G. N. .
IEEE TRANSACTIONS ON MAGNETICS, 2022, 58 (06)
[6]  
Chumak AV, 2015, NAT PHYS, V11, P453, DOI [10.1038/NPHYS3347, 10.1038/nphys3347]
[7]   CALCULATION OF THE INTENSITY OF LIGHT SCATTERED FROM MAGNONS IN THIN-FILMS [J].
COCHRAN, JF ;
DUTCHER, JR .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1988, 73 (03) :299-310
[8]   Micro-Brillouin light scattering spectroscopy of magnetic nanostructures [J].
Demokritov, Sergej O. ;
Demidov, Vladislav E. .
IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (01) :6-12
[9]   Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement [J].
Demokritov, SO ;
Hillebrands, B ;
Slavin, AN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 348 (06) :441-489
[10]   Asymmetric and symmetric local surface-plasmon-polariton excitation on chains of nanoparticles [J].
Evlyukhin, Andrey B. ;
Reinhardt, Carsten ;
Evlyukhina, Elena ;
Chichkov, Boris N. .
OPTICS LETTERS, 2009, 34 (14) :2237-2239